11 research outputs found

    Consensus-based technical recommendations for clinical translation of renal phase contrast MRI

    Get PDF
    Background Phase-contrast (PC) MRI is a feasible and valid noninvasive technique to measure renal artery blood flow, showing potential to support diagnosis and monitoring of renal diseases. However, the variability in measured renal blood flow values across studies is large, most likely due to differences in PC-MRI acquisition and processing. Standardized acquisition and processing protocols are therefore needed to minimize this variability and maximize the potential of renal PC-MRI as a clinically useful tool.Purpose To build technical recommendations for the acquisition, processing, and analysis of renal 2D PC-MRI data in human subjects to promote standardization of renal blood flow measurements and facilitate the comparability of results across scanners and in multicenter clinical studies.Study Type Systematic consensus process using a modified Delphi method.Population Not applicable.Sequence Field/Strength Renal fast gradient echo-based 2D PC-MRI.Assessment An international panel of 27 experts from Europe, the USA, Australia, and Japan with 6 (interquartile range 4-10) years of experience in 2D PC-MRI formulated consensus statements on renal 2D PC-MRI in two rounds of surveys. Starting from a recently published systematic review article, literature-based and data-driven statements regarding patient preparation, hardware, acquisition protocol, analysis steps, and data reporting were formulated.Statistical Tests Consensus was defined as >= 75% unanimity in response, and a clear preference was defined as 60-74% agreement among the experts.Results Among 60 statements, 57 (95%) achieved consensus after the second-round survey, while the remaining three showed a clear preference. Consensus statements resulted in specific recommendations for subject preparation, 2D renal PC-MRI data acquisition, processing, and reporting.Data Conclusion These recommendations might promote a widespread adoption of renal PC-MRI, and may help foster the set-up of multicenter studies aimed at defining reference values and building larger and more definitive evidence, and will facilitate clinical translation of PC-MRI.Level of Evidence 1Technical Efficacy Stage 1Cardiovascular Aspects of Radiolog

    Making oeconomic

    No full text

    Recent advances in psychoneuroimmunology: inflammation in psychiatric disorders

    No full text
    Psychiatric disorders are common and complex and their precise biological underpinnings remain elusive. Multiple epidemiological, molecular, genetic and gene expression studies suggest that immune system dysfunction may contribute to the risk for developing psychiatric disorders including schizophrenia, bipolar disorder, and major depressive disorder. However, the precise mechanisms by which inflammation-related events confer such risk are unclear. In this review, we examine the peripheral and central evidence for inflammation in psychiatric disorders and the potential molecular mechanisms implicated including inhibition of neurogenesis, apoptosis, the HPA-axis, the role of brain-derived neurotrophic factor and the interplay between the glutamatergic, dopaminergic and serotonergic neurotransmitter systems

    AGATA-Advanced GAmma Tracking Array

    Get PDF
    AGATA CollaborationThe Advanced GAmma Tracking Array (AGATA) is a European project to develop and operate the next generation gamma-ray spectrometer. AGATA is based on the technique of gamma-ray energy tracking in electrically segmented high-purity germanium crystals. This technique requires the accurate determination of the energy, time and position of every interaction as a gamma ray deposits its energy within the detector volume. Reconstruction of the full interaction path results in a detector with very high efficiency and excellent spectral response. The realisation of gamma-ray tracking and AGATA is a result of many technical advances. These include the development of encapsulated highly segmented germanium detectors assembled in a triple cluster detector cryostat, an electronics system with fast digital sampling and a data acquisition system to process the data at a high rate. The full characterisation of the crystals was measured and compared with detector-response simulations. This enabled pulse-shape analysis algorithms, to extract energy, time and position, to be employed. In addition, tracking algorithms for event reconstruction were developed. The first phase of AGATA is now complete and operational in its first physics campaign. In the future AGATA will be moved between laboratories in Europe and operated in a series of campaigns to take advantage of the different beams and facilities available to maximise its science output. The paper reviews all the achievements made in the AGATA project including all the necessary infrastructure to operate and support the spectrometer. (C) 2011 Elsevier B.V. All rights reserved.AGATA and this work is supported by the European funding bodies and the EU Contract RII3-CT-2004-506065, the German BMBF under Grants 06K-167 and 06KY205I, the Swedish Research Council and the Knut and Alice Wallenberg Foundation, UK EPSRC Engineering and Physical Sciences Research Council, UK STFC Science and Technology Facilities Council, AWE plc, Scientific and Technological Research Council of Turkey (Proj. nr. 106T055) and Ankara University (BAP Proj. nr. 05B4240002), the Polish Ministry of Science and Higher Education under Grant DPN/N190/AGATA/2009, the Spanish MICINN under grants FPA2008-06419 and FPA2009-13377-C02-02, the Spanish Consolider-Ingenio 2010 Programme CPAN (contract number CSD2007-00042) the Generalitat Valenciana under Grant PROMETEO/2010/101, and research performed in the frame of the GSI-IN2P3 collaboration agreement number 02-42. MICINN, Spain, and INFN, Italy, through the AIC10-D-000568 bilateral action.Peer Reviewe

    Lasers

    No full text
    corecore