243 research outputs found

    Estimated glomerular filtration rate is a poor predictor of the concentration of middle molecular weight uremic solutes in chronic kidney disease

    Get PDF
    Background: Uremic solute concentration increases as Glomerular Filtration Rate (GFR) declines. Weak associations were demonstrated between estimated GFR (eGFR) and the concentrations of several small water-soluble and protein-bound uremic solutes (MW500Da). Materials and Methods: In 95 CKD-patients (CKD-stage 2-5 not on dialysis), associations between different eGFR-formulae (creatinine, CystatinC-based or both) and the natural logarithm of the concentration of several LMWP's were analyzed: i.e. parathyroid hormone (PTH), Cystatin C (CystC), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-alpha), leptin, retinol binding protein (RbP), immunoglobin light chains kappa and lambda (Ig-kappa and Ig-lambda), beta-2-microglobulin (beta M-2), myoglobin and fibroblast growth factor-23 (FGF-23)). Results: The regression coefficients (R-2) between eGFR, based on the CKD-EPI-Crea-CystC-formula as reference, and the examined LMWP's could be divided into three groups. Most of the LMWP's associated weakly (R-2 0.7). Almost identical R-2-values were found per LMWP for all eGFR-formulae, with exception of CystC and beta M-2 which showed weaker associations with creatinine-based than with CystC-based eGFR. Conclusion: The association between eGFR and the concentration of several LMWP's is inconsistent, with in general low R-2-values. Thus, the use of eGFR to evaluate kidney function does not reflect the concentration of several LMWP's with proven toxic impact in CKD

    PAPEL DO FOSFATO NA DOENÇA CARDIOVASCULAR: MARCADOR OU CAUSADOR DE LESÃO?

    Get PDF
    Phosphate is an essential intracellular mineral that plays its role in a variety of metabolic pathways, like energy production and intracellular synthetis, apart from being and important block to various intracellular elements. Homeostasis of Pi, strictly regulated by parathormone, vitamin D and fibroblast growth factor 23, suffers greatly by the decline of renal function, as seen when phosphate overload and hyperphosphatemia takes its place. We will discuss the major clinical and experimental evidence that points to Pi as the newest villain of cardiovascular disease in the chronic renal disease population, as well as the population in general. Therapeutic strategies should be directed mainly in the reduction of Pi intake, that finds itself increased nowadays due to the presence of food preservatives based on this element in industrialized food. Populational studies are urgently needed to test in a more broad way the possible benefic effects of Pi overload control on cardiovascular system. O fosfato (Pi) é um mineral essencial que participa de diversos processos metabólicos, como produção de energia e sinalização intracelular, além de ser um importante constituinte de diversos elementos celulares. A homeostase do Pi, estritamente regulada pelo paratormônio, pela vitamina D e pelo fator de crescimento fibroblástico – 23, sofre um grande desequilíbrio com a perda da função renal, culminando com o desenvolvimento de hiperfosfatemia. Nessa revisão abordaremos a fisiologia do Pi e o seu desequilíbrio causado pela disfunção renal, que se revela através do desenvolvimento da sobrecarga de Pi e da própria hiperfosfatemia. Discutiremos ainda as principais evidências clínicas e experimentais que apontam para o Pi como o mais novo vilão das doenças cardiovasculares tanto na população renal crônica quanto na geral. As estratégias terapêuticas devem ser voltadas sobretudo para a redução da ingestão de Pi, que encontra-se aumentada nos dias atuais devido a presença de conservantes à base desse elemento utilizados nos alimentos industrializados. Estudos populacionais são urgentemente necessários para testar de modo mais amplo os possíveis efeitos benéficos do controle da sobrecarga de Pi sobre o sistema cardiovascular

    Regulator of G-protein signaling 1 critically supports CD8+ TRM cell-mediated intestinal immunity.

    Get PDF
    Members of the Regulator of G-protein signaling (Rgs) family regulate the extent and timing of G protein signaling by increasing the GTPase activity of Gα protein subunits. The Rgs family member Rgs1 is one of the most up-regulated genes in tissue-resident memory (TRM) T cells when compared to their circulating T cell counterparts. Functionally, Rgs1 preferentially deactivates Gαq, and Gαi protein subunits and can therefore also attenuate chemokine receptor-mediated immune cell trafficking. The impact of Rgs1 expression on tissue-resident T cell generation, their maintenance, and the immunosurveillance of barrier tissues, however, is only incompletely understood. Here we report that Rgs1 expression is readily induced in naïve OT-I T cells in vivo following intestinal infection with Listeria monocytogenes-OVA. In bone marrow chimeras, Rgs1 -/- and Rgs1 +/+ T cells were generally present in comparable frequencies in distinct T cell subsets of the intestinal mucosa, mesenteric lymph nodes, and spleen. After intestinal infection with Listeria monocytogenes-OVA, however, OT-I Rgs1 +/+ T cells outnumbered the co-transferred OT-I Rgs1- /- T cells in the small intestinal mucosa already early after infection. The underrepresentation of the OT-I Rgs1 -/- T cells persisted to become even more pronounced during the memory phase (d30 post-infection). Remarkably, upon intestinal reinfection, mice with intestinal OT-I Rgs1 +/+ TRM cells were able to prevent the systemic dissemination of the pathogen more efficiently than those with OT-I Rgs1 -/- TRM cells. While the underlying mechanisms are not fully elucidated yet, these data thus identify Rgs1 as a critical regulator for the generation and maintenance of tissue-resident CD8+ T cells as a prerequisite for efficient local immunosurveillance in barrier tissues in case of reinfections with potential pathogens

    Development of a Panel of Genome-Wide Ancestry Informative Markers to Study Admixture Throughout the Americas

    Get PDF
    Most individuals throughout the Americas are admixed descendants of Native American, European, and African ancestors. Complex historical factors have resulted in varying proportions of ancestral contributions between individuals within and among ethnic groups. We developed a panel of 446 ancestry informative markers (AIMs) optimized to estimate ancestral proportions in individuals and populations throughout Latin America. We used genome-wide data from 953 individuals from diverse African, European, and Native American populations to select AIMs optimized for each of the three main continental populations that form the basis of modern Latin American populations. We selected markers on the basis of locus-specific branch length to be informative, well distributed throughout the genome, capable of being genotyped on widely available commercial platforms, and applicable throughout the Americas by minimizing within-continent heterogeneity. We then validated the panel in samples from four admixed populations by comparing ancestry estimates based on the AIMs panel to estimates based on genome-wide association study (GWAS) data. The panel provided balanced discriminatory power among the three ancestral populations and accurate estimates of individual ancestry proportions (R2>0.9 for ancestral components with significant between-subject variance). Finally, we genotyped samples from 18 populations from Latin America using the AIMs panel and estimated variability in ancestry within and between these populations. This panel and its reference genotype information will be useful resources to explore population history of admixture in Latin America and to correct for the potential effects of population stratification in admixed samples in the region

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Cabbage and fermented vegetables : From death rate heterogeneity in countries to candidates for mitigation strategies of severe COVID-19

    Get PDF
    Large differences in COVID-19 death rates exist between countries and between regions of the same country. Some very low death rate countries such as Eastern Asia, Central Europe, or the Balkans have a common feature of eating large quantities of fermented foods. Although biases exist when examining ecological studies, fermented vegetables or cabbage have been associated with low death rates in European countries. SARS-CoV-2 binds to its receptor, the angiotensin-converting enzyme 2 (ACE2). As a result of SARS-CoV-2 binding, ACE2 downregulation enhances the angiotensin II receptor type 1 (AT(1)R) axis associated with oxidative stress. This leads to insulin resistance as well as lung and endothelial damage, two severe outcomes of COVID-19. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is the most potent antioxidant in humans and can block in particular the AT(1)R axis. Cabbage contains precursors of sulforaphane, the most active natural activator of Nrf2. Fermented vegetables contain many lactobacilli, which are also potent Nrf2 activators. Three examples are: kimchi in Korea, westernized foods, and the slum paradox. It is proposed that fermented cabbage is a proof-of-concept of dietary manipulations that may enhance Nrf2-associated antioxidant effects, helpful in mitigating COVID-19 severity.Peer reviewe

    Nrf2-interacting nutrients and COVID-19 : time for research to develop adaptation strategies

    Get PDF
    There are large between- and within-country variations in COVID-19 death rates. Some very low death rate settings such as Eastern Asia, Central Europe, the Balkans and Africa have a common feature of eating large quantities of fermented foods whose intake is associated with the activation of the Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) anti-oxidant transcription factor. There are many Nrf2-interacting nutrients (berberine, curcumin, epigallocatechin gallate, genistein, quercetin, resveratrol, sulforaphane) that all act similarly to reduce insulin resistance, endothelial damage, lung injury and cytokine storm. They also act on the same mechanisms (mTOR: Mammalian target of rapamycin, PPAR gamma:Peroxisome proliferator-activated receptor, NF kappa B: Nuclear factor kappa B, ERK: Extracellular signal-regulated kinases and eIF2 alpha:Elongation initiation factor 2 alpha). They may as a result be important in mitigating the severity of COVID-19, acting through the endoplasmic reticulum stress or ACE-Angiotensin-II-AT(1)R axis (AT(1)R) pathway. Many Nrf2-interacting nutrients are also interacting with TRPA1 and/or TRPV1. Interestingly, geographical areas with very low COVID-19 mortality are those with the lowest prevalence of obesity (Sub-Saharan Africa and Asia). It is tempting to propose that Nrf2-interacting foods and nutrients can re-balance insulin resistance and have a significant effect on COVID-19 severity. It is therefore possible that the intake of these foods may restore an optimal natural balance for the Nrf2 pathway and may be of interest in the mitigation of COVID-19 severity
    • …
    corecore