370 research outputs found

    An Electromagnetic Study of the Impact of Brain Anatomy on Deep Brain Stimulation

    Get PDF
    An electromagnetic simulation was performed to assess the volume of tissue activated on deep brain stimulation for two patients randomly selected. The finite element method is used to calculate the electric field distribution that predicts the volume of tissue activated. High-resolution magnetic resonance images are utilized to create patient-specific anatomical models of the subthalamic nucleus and the internal pallidum. The results confirmed the influence of brain anatomy leading to different shape and volume of tissue activated despite similar technical features. Thus, a patient-specific model and an adequate choice of stimulation parameters are crucial on deep brain stimulation outcomes.S

    Electrical conductivity of oxidized-graphenic nanoplatelets obtained from bamboo: Effect of the oxygen content

    Get PDF
    The large-scale production of graphene and reduced-graphene oxide (rGO) requires low-cost and eco-friendly synthesis methods. We employed a new, simple, cost-effective pyrolytic method to synthetize oxidized-graphenic nanoplatelets (OGNP) using bamboo pyroligneous acid (BPA) as a source. Thorough analyses via high-resolution transmission electron microscopy and electron energy-loss spectroscopy provides a complete structural and chemical description at the local scale of these samples. In particular, we found that at the highest carbonization temperature the OGNP-BPA are mainly in a sp2 bonding configuration (sp2 fraction of 87%). To determine the electrical properties of single nanoplatelets, these were contacted by Pt nanowires deposited through focused-ion-beam-induced deposition techniques. Increased conductivity by two orders of magnitude is observed as oxygen content decreases from 17% to 5%, reaching a value of 2.3 103 S m-1 at the lowest oxygen content. Temperature-dependent conductivity reveals a semiconductor transport behavior, described by the Mott three-dimensional variable range hopping mechanism. From the localization length, we estimate a band-gap value of 0.22(2) eV for an oxygen content of 5%. This investigation demonstrates the great potential of the OGNP-BPA for technological applications, given that their structural and electrical behavior is similar to the highly reduced rGO sheets obtained by more sophisticated conventional synthesis methods

    Somatostatin subtype-2 receptor-targeted metal-based anticancer complexes

    Get PDF
    Conjugates of a dicarba analogue of octreotide, a potent somatostatin agonist whose receptors are overexpressed on tumor cells, with [PtCl 2(dap)] (dap = 1-(carboxylic acid)-1,2-diaminoethane) (3), [(η 6-bip)Os(4-CO 2-pico)Cl] (bip = biphenyl, pico = picolinate) (4), [(η 6-p-cym)RuCl(dap)] + (p-cym = p-cymene) (5), and [(η 6-p-cym)RuCl(imidazole-CO 2H)(PPh 3)] + (6), were synthesized by using a solid-phase approach. Conjugates 3-5 readily underwent hydrolysis and DNA binding, whereas conjugate 6 was inert to ligand substitution. NMR spectroscopy and molecular dynamics calculations showed that conjugate formation does not perturb the overall peptide structure. Only 6 exhibited antiproliferative activity in human tumor cells (IC 50 = 63 ± 2 μ in MCF-7 cells and IC 50 = 26 ± 3 μ in DU-145 cells) with active participation of somatostatin receptors in cellular uptake. Similar cytotoxic activity was found in a normal cell line (IC 50 = 45 ± 2.6 μ in CHO cells), which can be attributed to a similar level of expression of somatostatin subtype-2 receptor. These studies provide new insights into the effect of receptor-binding peptide conjugation on the activity of metal-based anticancer drugs, and demonstrate the potential of such hybrid compounds to target tumor cells specifically. © 2012 American Chemical Society

    K2-137 b: an Earth-sized planet in a 4.3-hour orbit around an M-dwarf

    Get PDF
    We report the discovery from K2 of a transiting terrestrial planet in an ultra-short-period orbit around an M3-dwarf. K2-137 b completes an orbit in only 4.3 hours, the second-shortest orbital period of any known planet, just 4 minutes longer than that of KOI 1843.03, which also orbits an M-dwarf. Using a combination of archival images, AO imaging, RV measurements, and light curve modelling, we show that no plausible eclipsing binary scenario can explain the K2 light curve, and thus confirm the planetary nature of the system. The planet, whose radius we determine to be 0.89 +/- 0.09 Earth radii, and which must have a iron mass fraction greater than 0.45, orbits a star of mass 0.463 +/- 0.052 Msol and radius 0.442 +/- 0.044 Rsol.Comment: 12 pages, 9 figures, accepted for publication in MNRA

    Detailed Radio to Soft Gamma-ray Studies of the 2005 Outburst of the New X-ray Transient XTE J1818-245

    Full text link
    XTE J1818-245 is an X-ray nova that experienced an outburst in 2005, first seen by the RXTE satellite. The source was observed simultaneously at various wavelengths up to soft gamma-rays with the INTEGRAL satellite, from 2005 February to September. X-ray novae are extreme systems that often harbor a black hole, and are known to emit throughout the electromagnetic spectrum when in outburst. We analyzed radio, (N)IR, optical, X-ray and soft gamma-ray observations and constructed simultaneous broad-band X-ray spectra. Analyzing both the light curves in various energy ranges and the hardness-intensity diagram enabled us to study the long-term behavior of the source. Spectral parameters were typical of the Soft Intermediate States and the High Soft States of a black hole candidate. The source showed relatively small spectral variations in X-rays with considerable flux variation in radio. Spectral studies showed that the accretion disc cooled down from 0.64 to 0.27 keV in 100 days and that the total flux decreased while the relative flux of the hot medium increased. Radio emission was detected several times, and, interestingly, five days after entering the HSS. Modeling the spectral energy distribution from the radio to the soft gamma-rays reveals that the radio flares arise from several ejection events. XTE J1818-245 is likely a black hole candidate transient source that might be closer than the Galactic Bulge. The results from the data analysis trace the physical changes that took place in the system at a maximum bolometric luminosity of (0.4-0.9)e38 erg/s (assuming a distance between 2.8-4.3 kpc) and they are discussed within the context of disc and jet models.Comment: Accepted for publication in Astronomy and Astrophysics. 11 Figures, 3 Table

    The transiting multi-planet system HD3167: a 5.7 MEarth Super-Earth and a 8.3 MEarth mini-Neptune

    Get PDF
    HD3167 is a bright (V=8.9 mag) K0V star observed by the NASA's K2 space mission during its Campaign 8. It has been recently found to host two small transiting planets, namely, HD3167b, an ultra short period (0.96 d) super-Earth, and HD3167c, a mini-Neptune on a relatively long-period orbit (29.85 d). Here we present an intensive radial velocity follow-up of HD3167 performed with the FIES@NOT, [email protected], and HARPS-N@TNG spectrographs. We revise the system parameters and determine radii, masses, and densities of the two transiting planets by combining the K2 photometry with our spectroscopic data. With a mass of 5.69+/-0.44 MEarth, radius of 1.574+/-0.054 REarth, and mean density of 8.00(+1.0)(-0.98) g/cm^3, HD3167b joins the small group of ultra-short period planets known to have a rocky terrestrial composition. HD3167c has a mass of 8.33 (+1.79)(-1.85) MEarth and a radius of 2.740(+0.106)(-0.100) REarth, yielding a mean density of 2.21(+0.56)(-0.53) g/cm^3, indicative of a planet with a composition comprising a solid core surrounded by a thick atmospheric envelope. The rather large pressure scale height (about 350 km) and the brightness of the host star make HD3167c an ideal target for atmospheric characterization via transmission spectroscopy across a broad range of wavelengths. We found evidence of additional signals in the radial velocity measurements but the currently available data set does not allow us to draw any firm conclusion on the origin of the observed variation.Comment: 18 pages, 11 figures, 5 table

    EPIC 219388192 b - an inhabitant of the brown dwarf desert in the Ruprecht 147 open cluster

    Get PDF
    We report the discovery of EPIC 219388192 b, a transiting brown dwarf in a 5.3-day orbit around a member star of Ruprecht-147, the oldest nearby open cluster association, which was photometrically monitored by K2 during its Campaign 7. We combine the K2 time-series data with ground-based adaptive optics imaging and high resolution spectroscopy to rule out false positive scenarios and determine the main parameters of the system. EPIC 219388192 b has a radius of RbR_\mathrm{b}=0.937±0.0420.937\pm0.042~RJup\mathrm{R_{Jup}} and mass of MbM_\mathrm{b}=36.50±0.0936.50\pm0.09~MJup\mathrm{M_{Jup}}, yielding a mean density of 59.0±8.159.0\pm8.1~gcm3\mathrm{g\,cm^{-3}}. The host star is nearly a Solar twin with mass MM_\star=0.99±0.050.99\pm0.05~M\mathrm{M_{\odot}}, radius RR_\star=1.01±0.041.01\pm0.04~R\mathrm{R_{\odot}}, effective temperature Teff\mathrm{T_{eff}}=5850±855850\pm85~K and iron abundance [Fe/H]=0.03±0.080.03\pm0.08~dex. Its age, spectroscopic distance, and reddening are consistent with those of Ruprecht-147, corroborating its cluster membership. EPIC 219388192 b is the first brown dwarf with precise determinations of mass, radius and age, and serves as benchmark for evolutionary models in the sub-stellar regime.Comment: 13 pages, 11 figures, 4 tables, submitted to AAS Journal

    f(R) theories

    Get PDF
    Over the past decade, f(R) theories have been extensively studied as one of the simplest modifications to General Relativity. In this article we review various applications of f(R) theories to cosmology and gravity - such as inflation, dark energy, local gravity constraints, cosmological perturbations, and spherically symmetric solutions in weak and strong gravitational backgrounds. We present a number of ways to distinguish those theories from General Relativity observationally and experimentally. We also discuss the extension to other modified gravity theories such as Brans-Dicke theory and Gauss-Bonnet gravity, and address models that can satisfy both cosmological and local gravity constraints.Comment: 156 pages, 14 figures, Invited review article in Living Reviews in Relativity, Published version, Comments are welcom

    Appraisal of MC2010 shear resistance approaches coupled with a residual flexural strength prediction model

    Get PDF
    In the present work the predictive performance of the two approaches proposed by Model Code 2010 for the evaluation of the shear capacity of fiber reinforced concrete (FRC) elements flexurally reinforced with conventional steel bars is assessed considering a database (DBs) constituted by 80 FRC beams do not including conventional transverse reinforcements. The accuracy of these shear models is evaluated by statistical analysis of the prediction ratio between the experimental and estimated shear capacity of the beams of the DBs, and applying the Demerit Points Classification approach for further information about the reliability of the two approaches in design context. Due to the absence of the post-cracking experimental characterization of the FRC used in several beams considered in the DBs, an approach was developed for estimating the residual flexural strength parameters from the most relevant known variables of steel fiber reinforcement mechanisms for concrete, namely the fiber volume and aspect ratio, and the concrete compressive and tensile strength. The residual flexural strength prediction model is assessed and its influence on the performance of the shear resistance models is evaluatedSFRH/BDE/96381/2013 co-funded by CiviTest - Pesquisa de Novos Materiais para a Engenharia Civil, Lda. and by FCT - Portuguese Foundation for Science and Technology. The authors also acknowledge the support provided by the FCT project PTDC/ECM-EST/2635/201
    corecore