303 research outputs found

    Sparse coding on the spot: Spontaneous retinal waves suffice for orientation selectivity

    Get PDF
    Ohshiro, Hussain, and Weliky (2011) recently showed that ferrets reared with exposure to flickering spot stimuli, in the absence of oriented visual experience, develop oriented receptive fields. They interpreted this as refutation of efficient coding models, which require oriented input in order to develop oriented receptive fields. Here we show that these data are compatible with the efficient coding hypothesis if the influence of spontaneous retinal waves is considered. We demonstrate that independent component analysis learns predominantly oriented receptive fields when trained on a mixture of spot stimuli and spontaneous retinal waves. Further, we show that the efficient coding hypothesis provides a compelling explanation for the contrast between the lack of receptive field changes seen in animals reared with spot stimuli and the significant cortical reorganisation observed in stripe-reared animals

    A penalised piecewise-linear model for non-stationary extreme value analysis of peaks over threshold

    Get PDF
    This is the final version. Available on open access from Elsevier via the DOI in this recordData availability: Data will be made available on request.Metocean extremes often vary systematically with covariates such as direction and season. In this work, we present non-stationary models for the size and rate of occurrence of peaks over threshold of metocean variables with respect to one- or two-dimensional covariates. The variation of model parameters with covariate is described using a piecewise-linear function in one or two dimensions, defined with respect to pre-specified node locations on the covariate domain. Parameter roughness is regulated to provide optimal predictive performance, assessed using cross-validation, within a penalised likelihood framework for inference. Parameter uncertainty is quantified using bootstrap resampling. The models are used to estimate extremes of storm-peak significant wave height with respect to direction and season for a site in the northern North Sea. A covariate representation based on a triangulation of the direction-season domain with six nodes gives good predictive performance. The penalised piecewise-linear framework provides a flexible representation of covariate effects at reasonable computational cost.Engineering and Physical Sciences Research Council (EPSRC

    Problematising international placements as a site of intercultural learning

    Get PDF
    This paper theorises some of the learning outcomes of a three-year project concerning student learning in international social work placements in Malaysia. The problematic issue of promoting cultural and intercultural competence through such placements is examined, where overlapping hegemonies are discussed in terms of isomorphism of social work models, that of the nation state, together with those relating to professional values and knowledge, and the tyrannies of received ideas. A critical discussion of cultural competence as the rationale for international placements is discussed in terms of the development of the graduating social worker as a self-reflexive practitioner. The development of sustainable international partnerships able to support student placement and the issue of non-symmetrical reciprocation, typical of wide socio-economic differentials across global regions, is additionally discussed

    Reviewing research evidence and the case of participation in sport and physical recreation by black and minority ethnic communities

    Get PDF
    The paper addresses the implications of using the process of systematic review in the many areas of leisure where there is a dearth of material that would be admitted into conventional Cochrane Reviews. This raises important questions about what constitutes legitimate knowledge, questions that are of critical import not just to leisure scholars, but to the formulation of policy. The search for certainty in an area that lacks conceptual consensus results in an epistemological imperialism that takes a geocentric form. While clearly, there is a need for good research design whatever the style of research, we contend that the wholesale rejection of insightful research is profligate and foolhardy. A mechanism has to be found to capitalise on good quality research of whatever form. In that search, we draw upon our experience of conducting a review of the material available on participation in sport and physical recreation by people from Black and minority ethnic groups. The paper concludes with a proposal for a more productive review process that makes better use of the full panoply of good quality research available. © 2012 © 2012 Taylor & Francis

    Prolyl-4-hydroxylase 3 maintains ÎČ-cell glucose metabolism during fatty acid excess in mice

    Get PDF
    The α-ketoglutarate–dependent dioxygenase, prolyl-4-hydroxylase 3 (PHD3), is an HIF target that uses molecular oxygen to hydroxylate peptidyl prolyl residues. Although PHD3 has been reported to influence cancer cell metabolism and liver insulin sensitivity, relatively little is known about the effects of this highly conserved enzyme in insulin-secreting ÎČ cells in vivo. Here, we show that the deletion of PHD3 specifically in ÎČ cells (ÎČPHD3KO) was associated with impaired glucose homeostasis in mice fed a high-fat diet. In the early stages of dietary fat excess, ÎČPHD3KO islets energetically rewired, leading to defects in the management of pyruvate fate and a shift from glycolysis to increased fatty acid oxidation (FAO). However, under more prolonged metabolic stress, this switch to preferential FAO in ÎČPHD3KO islets was associated with impaired glucose-stimulated ATP/ADP rises, Ca(2+) fluxes, and insulin secretion. Thus, PHD3 might be a pivotal component of the ÎČ cell glucose metabolism machinery in mice by suppressing the use of fatty acids as a primary fuel source during the early phases of metabolic stress

    CMB observations from the CBI and VSA: A comparison of coincident maps and parameter estimation methods

    Full text link
    We present coincident observations of the Cosmic Microwave Background (CMB) from the Very Small Array (VSA) and Cosmic Background Imager (CBI) telescopes. The consistency of the full datasets is tested in the map plane and the Fourier plane, prior to the usual compression of CMB data into flat bandpowers. Of the three mosaics observed by each group, two are found to be in excellent agreement. In the third mosaic, there is a 2 sigma discrepancy between the correlation of the data and the level expected from Monte Carlo simulations. This is shown to be consistent with increased phase calibration errors on VSA data during summer observations. We also consider the parameter estimation method of each group. The key difference is the use of the variance window function in place of the bandpower window function, an approximation used by the VSA group. A re-evaluation of the VSA parameter estimates, using bandpower windows, shows that the two methods yield consistent results.Comment: 10 pages, 6 figures. Final version. Accepted for publication in MNRA

    The detection of M-dwarf UV flare events in the GALEX data archives

    Get PDF
    We present the preliminary results from implementing a new software tool that enables inspection of time-tagged photon data for the astronomical sources contained within individual GALEX ultraviolet images of the sky. We have inspected the photon data contained within 1802 GALEX images to reveal rapid, short-term (<500 sec) UV source variability in the form of stellar flares. The mean associated change in NUV magnitude due to this flaring activity is 2.7+/-0.3 mag. A list of 49 new UV variable-star candidates is presented, together with their associated Sloan Digital Sky Survey (SDSS) photometric magnitudes. From these data we can associate the main source of these UV flare events with magnetic activity on M-dwarf stars. Photometric parallaxes have been determined for 32 of these sources, placing them at distances ranging from approximately 25 to 1000pc. The average UV flare energy for these flare events is 2.5E30 ergs, which is of a similar energy to that of U-band, X-ray and EUV flares observed on many local M-dwarf stars. We have found that stars of classes M0 to M5 flare with energies spanning a far larger range and with an energy approximately 5 times greater than those of later (M6 to M8) spectral type.Comment: Accepted for the Astrophysical Journal Supplement, GALEX Special Issu

    Introductory programming: a systematic literature review

    Get PDF
    As computing becomes a mainstream discipline embedded in the school curriculum and acts as an enabler for an increasing range of academic disciplines in higher education, the literature on introductory programming is growing. Although there have been several reviews that focus on specific aspects of introductory programming, there has been no broad overview of the literature exploring recent trends across the breadth of introductory programming. This paper is the report of an ITiCSE working group that conducted a systematic review in order to gain an overview of the introductory programming literature. Partitioning the literature into papers addressing the student, teaching, the curriculum, and assessment, we explore trends, highlight advances in knowledge over the past 15 years, and indicate possible directions for future research

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 ÎŒm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio
    • 

    corecore