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ABSTRACT  38 

The alpha ketoglutarate-dependent dioxygenase, prolyl-4-hydroxylase 3 (PHD3), is a 39 

Hypoxia-Inducible Factor (HIF) target that uses molecular oxygen to hydroxylate peptidyl 40 

prolyl residues. While PHD3 has been reported to influence cancer cell metabolism and liver 41 

insulin sensitivity, relatively little is known about effects of this highly conserved enzyme in 42 

insulin-secreting β-cells in vivo. Here, we show that deletion of PHD3 specifically in β-cells 43 

(βPHD3KO) is associated with impaired glucose homeostasis in mice fed high fat diet. In the 44 

early stages of dietary fat excess, βPHD3KO islets energetically rewire, leading to defects in 45 

the management of pyruvate fate and a shift from glycolysis to increased fatty acid oxidation 46 

(FAO). However, under more prolonged metabolic stress, this switch to preferential FAO in 47 

βPHD3KO islets is associated with impaired glucose-stimulated ATP/ADP rises, Ca2+ fluxes 48 

and insulin secretion. Thus, PHD3 might be a pivotal component of the β-cell glucose 49 

metabolism machinery in mice by suppressing the use of fatty acids as a primary fuel source 50 

during the early phases of metabolic stress.  51 

 52 

 53 

  54 
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INTRODUCTION 55 

The prolyl-hydroxylase domain proteins (PHD1-3) encoded for by the Egl nine homolog genes 56 

are alpha ketoglutarate-dependent dioxygenases, which regulate cell function by catalyzing 57 

hydroxylation of peptidyl prolyl residues within various substrates using molecular oxygen (1-58 

4). There are three well-described mammalian isozymes: PHD1, PHD2 and PHD3, which were 59 

originally described as hydroxylating the alpha subunit of the transcription factor Hypoxia-60 

Inducible Factor (HIF) under normoxia (4), thus targeting it for polyubiquitylation and 61 

proteasomal degradation. When oxygen concentration becomes limited, PHD activity 62 

decreases and HIF is stabilized, leading to dimerization with the beta subunit and 63 

transcriptional regulation of target genes regulating the cellular response to hypoxia (5). While 64 

PHDs are generally regarded to be master HIF regulators, it is becoming increasingly apparent 65 

that they target a range of other substrates influencing cell function (6-9).  66 

PHD3 is unusual amongst the PHDs: it is transcriptionally regulated by HIF1 during 67 

hypoxia (10), although it does not always act to destabilize HIF1 (11, 12). A number of roles 68 

for PHD3 have been described under conditions of stress or hypoxia, including: macrophage 69 

influx and neutrophil survival (13, 14), apoptosis in various cancer models (8, 15, 16), and 70 

tumor cell survival (9) (reviewed in (17)). Due to the dependence of PHD3 on alpha-71 

ketoglutarate and oxygen for its activity (18), many of these actions are likely to be mediated 72 

through alterations in cell metabolism (19). Indeed, PHD3 increases glucose uptake in cancer 73 

cells through interactions with pyruvate kinase M2 (8, 20). In tumors exhibiting mutations in 74 

succinate dehydrogenase, fumarate hydratase and isocitrate dehydrogenase 1 and 2 (21-23), 75 

PHD3 activity is altered by aberrantly high cytosolic concentrations of succinate, fumarate and 76 

2-hydroxyglutarate (2-HG), suggesting that inactivation of this enzyme might be involved in 77 

the cellular transformation process. PHD3 has more recently been shown to hydroxylate and 78 

activate acetyl-CoA carboxylase 2 (ACC2), defined as the fatty acid oxidation gatekeeper, 79 

thus decreasing fatty acid breakdown and restraining myeloid cell proliferation during nutrient 80 
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abundance (24). Together, these studies place PHD3 as a central player in the regulation of 81 

glucose and fatty acid utilization with clear implications for metabolic disease risk.  82 

Along these lines, PHD3 has been reported to influence insulin sensitivity in the liver 83 

(25, 26), as well as maintain glucose-stimulated insulin secretion in a rat β-cell line (27). 84 

However, little is known about how PHD3 might contribute to glucose homeostasis and 85 

diabetes risk through effects directly in primary pancreatic β-cells. To ensure the appropriate 86 

release of insulin, β-cells have become well-adapted as glucose sensors. Thus, glucose 87 

enters the β-cell by facilitated diffusion through low affinity glucose transporters (28), before 88 

conversion into glucose-6-phosphate by glucokinase and subsequent splitting into pyruvate 89 

(29). The pyruvate then undergoes oxidative metabolism in the mitochondrial matrix through 90 

the tricarboxylic acid (TCA) cycle, driving increases in ATP/ADP ratio and leading to closure 91 

of ATP-sensitive K+ channels (30). This cascade triggers membrane depolarization, opening 92 

of voltage-dependent Ca2+ channels, influx of Ca2+, and Ca2+-dependent exocytosis of insulin 93 

vesicles through interactions with the SNARE machinery (30). Together with repression of 94 

hexokinase, monocarboxylic acid transporter 1 and lactate dehydrogenase A (31, 32), 95 

stimulus-secretion coupling prevents the inappropriate release of insulin in response to low 96 

glucose, amino acids or lactate.  97 

Given its reported roles in dictating fuel preference, we hypothesized that PHD3 might 98 

function as a pivotal component of the β-cell glucose-sensing machinery by suppressing the 99 

use of fatty acids as an energy source (27). To further investigate PHD3-regulated β-cell 100 

function in depth, we subjected a model of β-cell-specific Egln3/PHD3 deletion to extensive in 101 

vivo and in vitro characterization, including detailed stable isotope-resolved metabolic tracing. 102 

Here, we show that loss of PHD3 causes metabolic remodeling in the early stages of metabolic 103 

stress by shifting β-cell fuel source from glucose to fatty acids. However, as metabolic stress 104 

becomes more prolonged, this energetic rewiring impairs glucose-dependent ATP/ADP ratios, 105 

Ca2+ fluxes and insulin secretion.  106 



5 
 

As such, these studies build upon previous findings on PHD1-3 in islets and β-cells 107 

(27), and show that PHD3 likely constitutes a fundamental mechanism to restrain fatty acid 108 

utilization and maintain glucose-sensing in β-cells during early stages of metabolic stress.  109 

  110 



6 
 

RESULTS 111 

Confirmation of β-cell-specific PHD3 knockout 112 

We first generated a model of β-cell PHD3 knockout (βPHD3KO) by crossing the Ins1Cre 113 

deleter strain (33) with animals harboring flox’d alleles for Egln3 (34), which encodes PHD3. 114 

Given recently reported issues with allele-silencing in some Ins1Cre colonies (35), we 115 

quantified recombination efficiency of our line using R26-LSL-hM4Di/mCitrine animals 116 

harboring an mCitrine reporter. Immunostaining of Ins1Cre+/-;h4MDifl/- islets showed Ins1Cre-117 

mediated recombination of the flox’d allele in almost all insulin-immunopositive cells (98.3% ± 118 

1.8 %, mean ± SD) (Figure 1A and B), similar to that reported previously by us and others (33, 119 

36, 37). As expected from this, gene expression analyses showed a 2-fold reduction in Egln3 120 

expression (Figure 1C), the remainder most likely reflecting the relatively higher levels of Egln3 121 

detected in α-cells, as shown by RNA-seq (38, 39). Loss of Egln3 in βPHD3KO islets was not 122 

associated with compensatory changes in the other Egln paralogs, Egln1 and Egln2 (Figure 123 

1D and E). Immunohistochemical analyses showed that, while PHD3 expression was present 124 

throughout βPHD3CON islets, it was completely absent from β-cells in βPHD3KO mice (Figure 125 

1F). While Egln3 is expressed at low abundance in sorted β-cells (38, 39), this is likely to be 126 

a result of profound re-oxygenation following dissociation, thus suppressing Egln3 expression 127 

(40). Together, these data show that PHD3 is expressed in β-cells and can be conditionally 128 

deleted from this compartment in βPHD3KO animals, thus confirming the validity of the model.  129 

PHD3 does not contribute to glucose homeostasis under standard diet 130 

After confirming Egln3/PHD3 deletion, we set out to understand the metabolic phenotype of 131 

βPHD3KO mice. βPHD3KO mice presented with normal growth curves from 8-18 weeks of 132 

age compared to βPHD3CON littermates, with no apparent differences in male and female 133 

cohorts (Figure 2A and B). Intraperitoneal glucose tolerance testing in the same animals 134 

showed no abnormalities in glycemia (Figure 2C and D), which was unchanged up until the 135 

age of 20 weeks (Figure 2E and F). Likewise, oral glucose tolerance, largely determined by 136 
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incretin release from the intestine (41), was similar in βPHD3CON and βPHD3KO mice (Figure 137 

2G and H). As expected from the growth rates and glucose tolerance, both male and female 138 

βPHD3KO mice displayed similar insulin sensitivity to their βPHD3CON littermates (Figure 2I 139 

and J). Finally, no differences in islet size distribution (Figure 2K) and β-cell mass (Figure 2L 140 

and M) were detected in βPHD3KO versus βPHD3CON mice.  141 

PHD3 does not influence β-cell function in vitro under standard diet 142 

Isolation of islets for more detailed in vitro workup revealed normal expression of the β-cell 143 

transcription factors Pdx1, Mafa and Nkx6.1 in βPHD3KO islets, suggesting that βcell 144 

differentiation is unaffected by loss of PHD3 (Figure 3A). Further suggestive of mature β-cell 145 

function, live imaging approaches revealed normal glucose-stimulated Ca2+ fluxes (Figure 3B 146 

and C) and ATP/ADP ratios (Figure 3D and E) in βPHD3KO islets. Suggesting the presence 147 

of intact GLP1R signaling, an important amplifying input for insulin secretion, cAMP responses 148 

to the incretin-mimetic Exendin-4 (Figure 3F and G), as well as Glp1r expression (Figure 3H) 149 

were similar in βPHD3CON and βPHD3KO islets. In line with the Ca2+, ATP/ADP and cAMP 150 

analyses, both glucose- and Exendin-4-potentiated insulin secretion were similar in islets 151 

isolated from male and female βPHD3CON and βPHD3KO animals (Figure 3I and J).  152 

Loss of PHD3 improves insulin secretion at the onset of metabolic stress 153 

We next examined whether PHD3 might play a more important role in regulating insulin 154 

release during metabolic stress. Therefore, male animals were placed on high fat diet (HFD) 155 

to induce obesity and metabolic stress (42).  156 

Following 4 weeks HFD, Egln3 was moderately upregulated in βPHD3CON islets (Figure 4A). 157 

However, Egln3 levels remained suppressed in 4 weeks HFD βPHD3KO islets (Figure 4A). 158 

Glucose tolerance testing revealed significantly impaired glucose homeostasis in βPHD3KO 159 

mice at 4 weeks but not at 72 hrs HFD (Figure 4B and C), despite similar body weight gain 160 

compared to βPHD3CON littermates (Figure 4D). The 72 hour timepoint was used to 161 

differentiate effects of early and prolonged fatty acid incorporation/utilization. As expected, 162 
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fasting blood glucose levels were elevated in βPHD3CON mice following 4 weeks HFD (Figure 163 

4C). There was no effect of Cre or flox’d alleles per se on metabolic phenotype following 4 164 

weeks HFD, with Ins1wt/wt;Egln3fl/fl, Ins1Cre+/-;Egln3wt/wt and Ins1wt/wt;Egln3wt/wt controls being 165 

indistinguishable (Figure 4E). IPGTT at 4 weeks HFD showed no difference in the serum 166 

insulin levels between the βPHD3CON and βPHD3KO under fasting and glucose-stimulated 167 

conditions (Figure 4F). However, βPHD3KO mice mounted earlier and larger magnitude 168 

insulin secretory responses to glucose bolus, as shown by the stimulation index (Figure 4G). 169 

Islets isolated from the same animals secreted significantly more insulin in glucose-stimulated 170 

and Ex4-potentiated states (Figure 4H), while insulin content was similar to βPHD3CON 171 

littermates (Figure 4I). Finally, 4 weeks HFD had no effect on glucose tolerance during OGTT 172 

(Figure 4J), body composition (Figure 4K) and insulin sensitivity (Figure 4L) in βPHD3KO mice 173 

vs βPHD3CON littermates.  174 

Thus, βPHD3KO mice are glucose-intolerant on HFD, show improved insulin secretion and 175 

are able to release a greater fraction of their insulin granules (i.e. are more sensitized to 176 

exocytosis). These data raise the possibility that nutrient-sensing and utilization might be 177 

altered in βPHD3KO islets.  178 

PHD3 maintains glycolysis and pyruvate management in β-cells 179 

Given the reported roles of PHD3 in glycolysis, we wondered whether the changes in β-cell 180 

function observed during the early phases of high fat feeding in βPHD3KO mice might be 181 

associated with changes in glucose metabolism. We first looked at glycolytic fluxes using 14C 182 

glucose. While glucose oxidation was not altered at low or high glucose in islets from 4 weeks 183 

HFD βPHD3KO mice (Figure 5A), there was a small but significant decrease in 14C content in 184 

the aqueous phase, indicating a net reduction in tricarboxylic acid (TCA) cycle/other 185 

metabolites derived from glycolysis (Figure 5B). Notably, a 2-fold reduction in incorporation of 186 

glucose into the lipid pool (i.e. glucose-driven lipogenesis) was also detected in 4 weeks HFD 187 
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βPHD3KO islets (Figure 5C), suggestive of decreased oxidative pyruvate entry into the TCA 188 

cycle and lipogenic acetyl-CoA (43).  189 

To gain a higher resolution analysis of glucose fate, stable isotope-resolved tracing was 190 

performed in βPHD3KO islets using 13C6-[U]-glucose. The schematic in Figure 5D depicts the 191 

fate of 13C  from13C6-[U]-glucose in βPHD3KO islets, as assessed by gas chromatography-192 

mass spectrometry (GC-MS). Analysis of mass isotopomer distribution showed no differences 193 

in glucose incorporation into aspartate, glutamate, malate, fumarate or citrate in either 194 

standard chow or 4 weeks HFD βPHD3CON and βPHD3KO islets (Figure 5E-I). Thus, while 195 

the contribution of glucose to aqueous cellular metabolite pools is clearly reduced in 4 weeks 196 

HFD βPHD3KO islets (Figure 5B), there is no net change in the incorporation of glucose into 197 

each metabolite i.e. the TCA cycle proceeds normally despite lowered glucose fluxes. Islets 198 

from animals fed standard chow showed m+2 lactate accumulation (Figure 5J), which is 199 

consistent with lactate normally produced as a result of oxidative metabolism of glucose-200 

derived pyruvate. However, during HFD there was a pronounced switch to reduction of 201 

pyruvate to lactate (indicated by the m+3 isotopomer) in both genotypes (Figure 5J).  202 

Further analysis of steady-state lactate levels showed a significant increase in lactate 203 

production in islets from HFD-fed βPHD3KO versus βPHD3CON mice (Figure 5K). Together 204 

with the m+2 → m+3 switch, this finding confirms initial measures with 14C glucose indicating 205 

reduced fueling of the TCA cycle by glycolysis (Figure 5B). Furthermore, the tracing data 206 

suggest that 4 weeks HFD βPHD3KO islets increase the reduction of pyruvate → lactate to 207 

support continued glycolysis through regeneration of the cytosolic NAD+ pool. While 208 

expression of the “disallowed gene” Ldha (31, 32) tended to be increased, this was variable 209 

and not significantly different between βPHD3CON and βPHD3KO islets. (Figure 5L).  210 

Together, these data suggest that metabolic stress induces defects in the management of 211 

pyruvate fate in βPHD3KO islets, implying that insulin secretion in vitro must be maintained 212 

and even amplified through mechanisms other than glycolysis.  213 
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PHD3 suppresses fatty acid use under metabolic stress 214 

We hypothesized that βPHD3KO islets might switch to an alternative energy source to sustain 215 

their function, namely beta oxidation of fatty acids, which are present in excess during HFD. 216 

Moreover, in cancer cells PHD3 has been shown to increase activity of ACC2, which converts 217 

acetyl-CoA → malonyl-CoA, the latter suppressing carnitine palmitoyltransferase I (CPT1), the 218 

rate-limiting step in fatty acid oxidation (24, 44). Indicating a profound change in β-cell nutrient 219 

preference, supplementation of culture medium with the fatty acid palmitate for 48-72 hrs 220 

augmented glucose-stimulated and Exendin4-potentiated insulin secretion in 4 weeks HFD 221 

βPHD3KO islets (Figure 6A). By contrast, 4 weeks HFD βPHD3CON islets showed no 222 

increase in glucose-stimulated insulin release following culture with palmitate (Figure 6B), 223 

confirming that the fatty acid was unlikely to induce lipotoxicity at the concentration and timing 224 

used here. Interestingly, 48-72 hrs incubation with palmitate increased Exendin4-potentiated 225 

insulin secretion in 4 weeks HFD βPHD3CON islets (Figure 6B).  226 

Providing evidence for increased CPT1 activity in 4 weeks HFD βPHD3KO islets, the CPT1a 227 

inhibitor etomoxir was able to augment ATP/ADP responses to glucose in 4 weeks HFD 228 

βPHD3KO relative to βPHD3CON islets (Figure 6C), although mRNA levels of Cpt1a were 229 

similar (Figure 6D). In line with this finding, culture with low palmitate concentration decreased 230 

glucose-stimulated Ca2+ fluxes in 4 weeks HFD βPHD3KO but not in βPHD3CON islets 231 

(Figure 6E and F), presumably due to increased flux of fatty acid-derived acetyl-CoA into the 232 

TCA cycle. While glucose-driven Ca2+ fluxes were apparently normal in 4 weeks HFD 233 

βPHD3KO islets, this was likely due to increased sensitivity of voltage-dependent Ca2+ 234 

channel to membrane depolarization, since responses to KCl were significantly elevated 235 

(Figure 6G and H).  236 

To gain a higher resolution view of fatty acid fate, we incubated 4 weeks HFD βPHD3CON 237 

and βPHD3KO islets with D31-palmitate, before measurement of intracellular D31-palmitate 238 

concentration and 2H20 released from fatty acid oxidation. With this assay, the ratio of 2H20 239 

https://en.wikipedia.org/wiki/Carnitine_palmitoyltransferase_I
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to intracellular D31-palmitate provides a measure of fatty acid oxidation, whilst accounting for 240 

any differences between tracer uptake/turnover. Confirming accuracy of the assay, 2H20/D31-241 

palmitate values were robustly increased after 16 hrs versus 2 hrs incubation with tracer 242 

(Figure 6I).Notably, 2H20/D31-palmitate values were significantly higher in 4 weeks HFD 243 

βPHD3KO versus βPHD3CON islets at the 16 hrs timepoint (Figure 6I), indicative of higher 244 

fatty acid oxidation rates. Uptake of tracer was similar in βPHD3KO versus βPHD3CON islets 245 

(Figure 6J).  246 

Taken together, these data strongly suggest that PHD3 loss leads to alterations in fatty acid 247 

utilization in islets.  248 

Loss of PHD3 decreases dependency on glucose as a fuel source 249 

We wondered whether increased fatty acid utilization in 4 weeks HFD βPHD3KO islets was 250 

associated with a decreased dependency on glucose as a primary fuel source. Confirming a 251 

switch away from glycolysis, glucose-stimulated ATP/ADP ratios were markedly decreased in 252 

4 weeks HFD βPHD3KO islets (Figure 6K and L), despite the apparent increases in insulin 253 

secretion (Figure 6A). Moreover, steady-state pyruvate levels were decreased in 4 weeks HFD 254 

βPHD3KO islets (Figure 6M). Lastly, glucose-stimulated insulin secretion (GSIS) was impaired 255 

in SC βPHD3KO islets that were starved of glucose (3 mM) for 3 hrs prior to challenge (Figure 256 

6N), presumably due to dysregulated use of alternative fuel sources, which then inhibit critical 257 

metabolic hubs in central carbon metabolism, such as pyruvate dehydrogenase. These data 258 

further confirm the presence of defective pyruvate handling and suggest that βPHD3KO islets 259 

alter pyruvate production and/or increase pyruvate → lactate conversion to maintain redox 260 

balance during HFD. 261 

Thus, following 4 weeks HFD, βPHD3KO islets become less reliant on glycolysis to fuel 262 

ATP/ADP production, are able to sustain oxidative phosphorylation through fatty acid use, and 263 

secrete more insulin when both glucose and fatty acids are present. 264 

Regulated gene expression of ACC1 and ACC2 in β-cells 265 
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Previous studies have shown that PHD3 maintains glucose metabolism by hydroxylating and 266 

activating ACC2 (encoded by Acacb), which inhibits CPT1 through generation of mitochondrial 267 

malonyl-CoA, thus suppressing use of fatty acids via beta oxidation (45, 46). However, β-cells 268 

are thought to predominantly express ACC1 (encoded by Acaca) (45, 46), which supplies 269 

cytosolic malonyl-CoA to fatty acid synthase for de novo lipid biosynthesis rather than for beta 270 

oxidation (43). Therefore, we sought to determine whether it was possible for PHD3 to act via 271 

ACC2 in pancreatic β-cells. We re-examined the expression of ACACB in pancreatic β-cells 272 

in multiple well-powered bulk islet and purified β-cell gene expression datasets (38, 47, 48). 273 

ACACB mRNA was found to be present in β-cells, albeit at much lower levels than ACACA 274 

mRNA (Supplementary figure 1A). Our data suggests that the presence of ACACB mRNA in 275 

β-cells is not artefactual: first, the mRNA levels of ACACB are comparable to the β-cell 276 

transcription factor HNF1A, suggesting ample gene expression levels compatible with function 277 

(Supplementary figure 1A). Second, the ACACB gene promoter is bound by islet and β-cell 278 

specific transcription factors, suggesting that ACACB is a bona fide β-cell gene under the 279 

regulation of cell-specific transcription factors (Supplementary figure 1B). Our findings thus 280 

suggest that, as long as protein translation occurs, PHD3 could maintain glucose metabolism 281 

in pancreatic β-cells via hydroxylation of ACC2. We next examined if ACACB gene expression 282 

is under the regulation of PHD3 protein. Gene expression levels of Acaca and Acacb were 283 

similar in 4 weeks HFD βPHD3KO and βPHD3KO islets (Figure 7A and B), suggesting that 284 

Acacb mRNA levels are not regulated by PHD3 activity.  285 

Thus, ACACB is present in β-cells, contains promoter regions regulated by β-cell-specific 286 

transcription factors, but does not depend upon PHD3 for expression. These data are 287 

consistent with a scenario whereby PHD3 hydroxylates ACC2 without influencing mRNA 288 

expression. 289 

PHD3 protects against insulin secretory failure during prolonged metabolic stress 290 
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Lastly, we sought to understand the phenotype of βPHD3KO mice when faced with continued 291 

fatty acid/nutrient abundance. Glucose intolerance was still present in βPHD3KO mice 292 

following 8 weeks on HFD (Figure 7C), although less severe than at 4 weeks HFD, suggesting 293 

that metabolic rewiring might in fact be protective against prolonged exposure to excess fatty 294 

acids in vivo. As was the case at 4 weeks HFD, βPHD3KO mice showed similar insulin 295 

sensitivity to βPHD3CON after 8 weeks HFD (Figure 7D). In contrast to the IPGTT data, oral 296 

glucose tolerance was preserved at this time point in βPHD3KO mice, suggesting an intact 297 

incretin action (Figure 7E). Furthermore, body composition of 8 weeks HFD βPHD3KO mice 298 

was similar to βPHDCON (Figure 7F). By this point, however, impaired glucose-stimulated 299 

insulin secretion (Figure 7G) was apparent in isolated βPHD3KO islets. This secretory deficit 300 

could be rescued by application of Exendin4 to sensitize insulin granules to exocytosis (Figure 301 

7G and H), as expected from the OGTT results. In addition, the amplitude of glucose-302 

stimulated Ca2+ rises was significantly reduced in 8 weeks HFD βPHD3KO compared to 303 

βPHD3CON islets (Figure 7I and J).  304 

Suggesting that profound defects in voltage-dependent Ca2+ channels might also be present, 305 

responses to the generic depolarizing stimulus KCl were markedly blunted in the same islets 306 

(Figure 7I and J). While apoptosis was increased in 8 weeks HFD βPHD3KO islets (Figure 7K 307 

and L), this did not reflect a (detectable) lipotoxic ER stress response, since Ddit3, Hspa5 and 308 

Xbp1 (Figure 7M) expression remained unchanged. Moreover, PCNA staining (Figure 7N and 309 

O) and α-cell/β-cell ratio (Figure 7P and Q) were similar in 8 weeks HFD βPHD3CON and 310 

βPHD3KO islets, suggesting that β-cells were unlikely to be less/more proliferative or adopting 311 

α-cell features (or vice versa). Nonetheless, a profound 2-fold increase in β-cell mass was 312 

observed in 8 weeks HFD βPHD3KO mice (Figure 7R and S), with a significant increase in 313 

the proportion of larger islets (Figure 7T), implying that either: 1) apoptosis was restricted to 314 

smaller/medium islets; or 2) changes in apoptosis/proliferation rate had not yet been able to 315 

counter previous β-cell mass expansion. 316 

Loss of PHD3 is not associated with changes in HIF stabilization  317 
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Previous studies have shown that PHD3 is highly regulated at the transcriptomic level by 318 

hypoxia (10), and in line with this, we also found that Egln3 levels in WT islets were increased 319 

under hypoxic (1% O2) conditions (Supplementary figure 2A). To account for HIF-dependent 320 

effects on β-cell phenotype in SC βPHD3KO animals, a number of canonical HIF1α-target 321 

genes were assessed. Notably, levels of Bnip3, Car9 and Gls were similar between normoxic 322 

(21% O2) SC βPHD3CON and βPHD3KO islets (Supplementary figure 2B-D). Further 323 

suggesting the presence of intact HIF signaling, Bnip3 and Car9 were upregulated to similar 324 

levels in hypoxic (1% O2) SC βPHD3CON and βPHD3KO islets, while Gls did not reliably 325 

increase (Supplementary figure 2B-D). Glucose and KCl-stimulated Ca2+ fluxes, shown to be 326 

sensitive to HIF stabilization (49), were similar in βPHD3CON and βPHD3KO islets exposed 327 

to hypoxia (Supplementary figure 2E-H).  328 

Suggesting that stabilization of HIF1α and HIF2α was unlikely to be a major feature in 4 weeks 329 

HFD βPHD3KO islets, Bnip3, Car9 and Gls levels were similar to βPHD3CON (Supplementary 330 

figure 2I-K). Furthermore, at 8 weeks HFD the HIF2α target Ccnd1 remained similar in 331 

βPHD3CON and βPHD3KO islets, while gene Dll4 was downregulated (Supplementary figure 332 

2L and M).  333 

 334 

  335 
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DISCUSSION 336 

In the present study, we show that the alpha-ketoglutarate-dependent PHD3 maintains β-cell 337 

glucose sensing under states of metabolic stress associated with fatty acid abundance. Our 338 

data suggest that PHD3 is required for ensuring that acetyl-CoA derived from glycolysis 339 

preferentially feeds the TCA cycle, linking blood glucose levels with ATP/ADP generation, β-340 

cell electrical activity and insulin secretion. Loss of PHD3 leads to metabolic remodeling under 341 

HFD, resulting in decreased glycolytic fluxes, an increase in lactate accumulation and 342 

utilization of fatty acids as an energy source. Thus, PHD3 appears to be a critical component 343 

of the β-cell metabolic machinery required for glucose sensing during episodes of nutritional 344 

overload (Figure 8).  345 

Previous studies have shown that the PHD1-3 inhibitor ethyl-3,4-dihydroxybenzoate 346 

(EDHB) exerts bimodal effects on islets: low concentrations increase GSIS, while high doses 347 

impair GSIS (27). Suggesting that these changes are mediated primarily by PHD3, siRNAs 348 

against PHD1 and PHD2 were without effect on GSIS in INS1-832/13 clonal rat β-cells, 349 

whereas PHD3 siRNA markedly blunted release of the hormone (27). Using a conditional 350 

knockout model, our studies extend these findings to primary islets and provide further 351 

mechanistic evidence for a critical role of PHD3 in β-cell metabolism and function. A key 352 

difference between the studies is that PHD3 loss only impairs GSIS in islets exposed to 353 

metabolic stress (HFD), whereas effects were apparent in INS1-832/13 under normal culture 354 

conditions. The most likely explanation for this finding is the different metabolic dependencies 355 

of primary islets versus proliferative, immortalized β-cells.  356 

How does PHD3 maintain glucose metabolism in β-cells? Previous studies in cancer 357 

cells and skeletal muscle have shown that PHD3 hydroxylates and activates ACC2, 358 

suppressing beta oxidation (24). While β-cells are thought to predominantly express ACC1, 359 

the levels of ACACB, which encodes ACC2, were found to be similar to the β-cell transcription 360 

factor HNF1A, albeit lower than those of ACACA. We thus propose that loss of PHD3 might 361 
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plausibly lead to suppression of ACC2 activity, which becomes apparent during HFD when its 362 

substrate is present in abundance. Alternatively, PHD3 might hydroxylate and activate ACC1, 363 

leading to regulation of CPT1 by malonyl-CoA when fatty acids are supplied in excess, as 364 

suggested by glucose oxidation experiments. In both cases, identifying the PHD3 365 

hydroxylation sites involved will be critical. However, assigning hydroxylation targets using 366 

mass spectrometry is currently controversial: mis-alignment of hydroxylation is frequently 367 

associated with the presence of residues in the tryptic fragment that can be artefactually 368 

oxidized (44, 50). Thus, studies using animals lacking PHD3 and ACC1/ACC2 in β-cells, or 369 

alternatively the use of (relatively) specific inhibitors, would be required to definitively link the 370 

carboxylase with the phenotype here. 371 

As normal chow contains a low proportion of calories from fat, metabolic stress was 372 

needed to reveal the full in vitro and in vivo phenotype associated with PHD3 loss. These data 373 

also support an effect of PHD3 on ACC1/2 and CPT1, since without acyl-CoA derived from 374 

exogenous fatty acids, glucose would still constitute the primary fuel source and regulator of 375 

insulin release. The lack of phenotype under normal diet is unlikely to reflect the age of the 376 

animals, since even at 20 weeks of age, glucose intolerance was still not present in βPHD3KO 377 

mice. Of interest, the severity of the βPHD3KO in vivo phenotype was milder at 8 weeks versus 378 

4 weeks HFD feeding, despite the presence of impaired glucose-dependent β-cell function by 379 

this timepoint. These observations suggest that, by 8 weeks HFD, compensatory protective 380 

mechanisms may become upregulated as a consequence of the metabolic re-wiring in β-cells. 381 

It will be necessary in the future to investigate the mechanistic/phenotypic changes occurring 382 

during even longer duration HFD feeding (e.g. 12-20 wks). It will also be interesting to 383 

understand how PHD3 activity changes in other models of metabolic stress, such as db/db 384 

and ob/ob mice. 385 

Suggesting that the phenotype associated with PHD3 loss was not due to changes in 386 

HIF signaling, no differences in the gene expression of HIF1 targets could be detected in 387 

βPHD3KO versus βPHD3CON islets. Indeed, PHD2 is the major hydroxylase that regulates 388 
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HIF1α stability (11, 12), with no changes in activity of the transcription factor following PHD3 389 

loss (11, 12, 51). Thus, it is perhaps unsurprising that there is a lack of HIF1 transcriptional 390 

signature in βPHD3KO islets, in agreement with previous studies in other tissues (51, 52). In 391 

addition, glucose-stimulated Ca2+ fluxes, a sensitive readout of changes in oxygen-dependent 392 

regulation (49), were unaffected during hypoxia in βPHD3KO islets. While there was a trend 393 

toward increased Ldha expression in HFD βPHD3KO islets, this was just a fraction of that 394 

previously reported in hypoxic rodent islets (53). Nonetheless, we cannot completely exclude 395 

HIF-dependent effects, and as such, studies should either be repeated on a HIF1- and HIF2-396 

null background (i.e. a quadruple transgenic) or using (moderately) specific chemical 397 

inhibitors. 398 

We acknowledge a number of limitations with the present studies. Firstly, work-up was 399 

limited to rodents and it will be important to confirm whether results translate to human islets 400 

or not. While our attempts at silencing PHD3 using EGLN3 shRNA were unsuccessful, studies 401 

using (relatively) specific PHD3 inhibitors are warranted. Secondly, interactions between 402 

PHD3 and ACC2 are inferred from our metabolic work up and known biochemistry. Identifying 403 

hydroxylation sites and creating corresponding ACC1/2 mutants is needed, but current mass 404 

spectrometry analysis is challenging due to the assignment of false positives, as mentioned 405 

above. Thirdly, we focused our studies on 4 and 8 weeks HFD and it is unclear whether the 406 

switch toward increased fatty acid utilization might be maladaptive or protective in βPHD3KO 407 

mice during longer periods of HFD feeding. Fourthly, HFD studies were restricted to male 408 

animals and further studies should be extended to female animals. While sex differences in 409 

phenotype were not observed under standard diet, we cannot exclude a sexually dimorphic 410 

effect of HFD. In summary, PHD3 possesses a conserved role in gating nutrient preference 411 

toward glucose and glycolysis during both cell transformation (24) and metabolic stress (as 412 

shown here). It will be interesting to now study whether similar effects of PHD3 are present in 413 

other cell types involved in glucose-sensing (for example, pancreatic alpha cells, hypothalamic 414 

neurons).  415 
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METHODS 416 

Experimental design  417 

No data were excluded unless the cells displayed a non-physiological state (i.e. impaired 418 

viability). All individual data points are reported. The measurement unit is animal or batch of 419 

islets, with experiments replicated independently. Animals and islets were randomly allocated 420 

to treatment groups to ensure that all states were represented in the different experiment arms.  421 

Mouse models 422 

β-cell-specific PHD3 (βPHD3KO) knockout mice were generated using the Cre-LoxP system. 423 

Ins1Cre mice (JAX stock no. 026801), with Cre-recombinase knocked into the Ins1 gene 424 

locus, were crossbred to mice carrying flox’d alleles for PHD3 (Egln3fl/fl) (34). Adult βPHD3KO 425 

animals (Ins1Cre+/-;Egln3fl/fl) and their controls (βPHD3CON) (Ins1wt/wt;Egln3fl/fl, Ins1Cre+/-426 

;Egln3wt/wt and Ins1wt/wt;Egln3wt/wt) were used from 8-20 weeks of age under both standard diet 427 

and high fat diet conditions. No extra-pancreatic recombination has been observed in Ins1Cre 428 

mice and possession of a Cre allele is not associated with any changes in glucose 429 

homeostasis in our hands (33, 36). Recombination efficiency of the Ins1Cre allele was 430 

checked using a R26-LSL-hM4Di/mCitrine (JAX stock no. 026219) DREADD reporter strain. 431 

Animals were maintained on a C57BL/6J background and backcrossed for at least 6 432 

generations following re-derivation into the animal facility. Lines were regularly refreshed by 433 

crossing to bought-in C57BL/6J (Charles River). Wild type male CD1 mice aged 8-12 weeks 434 

(Charles River) were used for confirmation of gene expression under hypoxic (1% O2) 435 

conditions. βPHD3CON and βPHD3KO mice were fed standard chow (SC) and/or high fat diet 436 

containing 60% fat (HFD), (Research Diets, cat.no.D12492), with body weight checked weekly 437 

until 18-20 weeks of age. Animals were maintained in a specific pathogen-free facility, with 438 

free access to food and water.  439 

Intraperitoneal and oral glucose tolerance testing 440 
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Mice were fasted for 4-6 hrs, before intraperitoneal injection of glucose. Animals on SC 441 

received 2 g/kg body weight glucose, whereas those on HFD received a lower dose of 1 g/kg 442 

body weight. In our hands, this allows measurement of blood glucose concentration without 443 

the need to dilute samples and decreases adverse reactions associated with profound 444 

hyperglycemia. Blood samples for glucose measurement were taken from the tail vein at 0, 445 

15, 30, 60, 90 and 120 min post-challenge. Glucose was measured using a Contour XT 446 

glucometer (Bayer, Germany). For mice on SC, intraperitoneal glucose tolerance testing 447 

(IPGTT) was performed every 2-4 weeks, between 8-20 weeks of age. HFD-fed mice 448 

underwent IPGTT following 72 hrs, 4 and 8 weeks of HFD. Oral glucose tolerance testing 449 

(OGTT) was performed as for IPGTT, except that glucose was delivered using an oral gavage 450 

tube (2 g/kg and 1 g/kg body weight in SC-fed and HFD-fed mice, respectively) .  451 

Serum insulin 452 

Blood samples were collected following intraperitoneal glucose injection (1 g/kg body weight). 453 

Serum was separated by centrifugation (2500 rpm/10 min/4°C), before assaying using a HTRF 454 

Mouse Serum Insulin Assay kit assay (Cisbio, France). Due to NC3R limits on blood sample 455 

volumes, insulin was only measured at 0, 15 and 30 min post-glucose injection.  456 

Insulin tolerance test (ITT)  457 

Mice fasted for 4-6 hrs (SC and 4 weeks HFD cohorts) or overnight (8 weeks HFD cohort) 458 

received 0.75 U/kg body weight insulin (Humulin S, 100 U/ml, Lilly, UK) given by 459 

intraperitoneal injection. Blood glucose was measured at 0, 15, 30, 60, 90 and 120 min post-460 

insulin injection.  461 

Body composition measurement 462 

Male βPHD3CON and βPHD3KO mice fed HFD for 4 and 8 weeks were weighed and 463 

sacrificed by cervical dislocation. The followed tissues were harvested and weighed 464 

immediately post-mortem: visceral fat (epidydymal fat pads), subcutaneous fat, brown adipose 465 
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tissue, liver and muscle (quadriceps femoris). Tissue contribution to body composition was 466 

expressed as % body weight.   467 

Islet isolation 468 

Islets were isolated following bile duct injection with NB8 1 mg/ml collagenase (Serva) and 469 

Histopaque/Ficoll gradient separation (Sigma-Aldrich). Islets were cultured in RPMI medium 470 

containing 10% FCS, 100 units/mL penicillin, and 100 μg/mL streptomycin (Sigma-Aldrich) at 471 

5% CO2, 37°C. For experiments under hypoxia, islets were incubated in a Don Whitely H35 472 

Hypoxystation, allowing oxygen tension to be finely regulated at either 1% or 21%.   473 

Gene expression 474 

Trizol purification was used for mRNA extraction, while cDNA was synthesized by reverse 475 

transcription. Gene expression was detected by real time PCR (qPCR), using PowerUp SYBR 476 

Green Master Mix (Thermofisher Scientific) and quantification was based on the 2–ΔΔCt method, 477 

expressed as fold-change in gene expression. The sequence of the forward and reverse  478 

primers used in the study can be found in Supplementary Table 1.  479 

Immunohistochemistry 480 

Pancreata were isolated, fixed in 10% formalin and embedded in paraffin. Paraffin slides were 481 

deparaffinized and rehydrated, before antigen retrieval using citrate buffer. Sections stained 482 

for PHD3 were incubated overnight at 4°C with guinea pig anti-insulin 1:100 (Abcam, ab7842) 483 

and rabbit anti-PHD3 1:100 (Novus Bio, NB100-139), followed by washing and 2h incubation 484 

at room temperature with anti-guinea pig Alexa Fluor 568 1:300 (ThermoFisher Scientific, A-485 

11075) and anti-rabbit Alexa Fluor 488 1:1000 (ThermoFisher Scientific, A-21206). PCNA 486 

staining was carried out using rabbit anti-insulin 1:500 (Cell Signaling, 3014S) and mouse anti-487 

PCNA 1:500 (Cell Signaling, 2586) as primary antibodies. Secondary antibodies used were 488 

anti-rabbit Alexa Fluor 568 1:500 (ThermoFisher Scientific, A-10042) and anti-mouse Alexa 489 
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Fluor 488 (ThermoFisher Scientific; A11001). VECTASHIELD HardSet mounting medium with 490 

DAPI was used to mount coverslips on the sections. 491 

Images were taken using a Zeiss LSM780 meta-confocal microscope equipped with highly-492 

sensitive GaAsP PMT detectors. Excitation was delivered at λ = 405 nm, λ = 488 nm and λ = 493 

561 nm for DAPI, Alexa Fluor 488 and Alexa Fluor 568, respectively. For PHD3 staining, the 494 

emitted signals were detected at λ = 410-472 nm, λ = 507-596 nm and λ = 561-694 nm, for 495 

DAPI, Alexa Fluor 488 and Alexa Fluor 568, respectively. For PCNA staining, emitted signals 496 

were detected at λ = 418-507 nm, λ = 507-552 nm and λ = 579-641 nm for DAPI, Alexa Fluor 497 

488 and Alexa Fluor 568, respectively. 498 

TUNEL staining was performed using the DeadEnd Fluorometric TUNEL System (Promega), 499 

as previously described (54). The proportion of apoptotic β-cells was calculated as the area 500 

of TUNEL+ staining (fluorescein-12-dUTP)/area of insulin+ staining (as above). α-cell/ β-cell 501 

ratio was calculated following staining with rabbit antibodies against insulin (as above) and 502 

glucagon (primary antibody: mouse anti-glucagon 1:2000; Sigma-Aldrich, G2645) (secondary 503 

antibody goat anti-mouse Alexa Fluor 488 1:500; ThermoFisher Scientific, A11001). Images 504 

were captured as above. Excitation was delivered at λ = 405 nm, λ = 488 nm and λ = 633 nm 505 

for DAPI, fluorescein-12-dUTP/Alexa Fluor 488 and Alexa Fluor 647, respectively. Emitted 506 

signals were detected at λ = 428-533 nm, λ = 498-559 nm and λ = 643–735 nm for DAPI, 507 

fluorescein-12-dUTP/Alexa Fluor 488 and Alexa Fluor 633, respectively. For β-cell mass 508 

analysis, sections were incubated with rabbit anti-insulin 1:500 (Cell Signaling, 3014S) and 509 

mouse anti-glucagon 1:2000 (Sigma-Aldrich, G 2654) followed by washing and application of 510 

goat anti-rabbit Alexa Fluor 647 1:500 (ThermoFisher Scientific, A-21244) and goat anti-511 

mouse DyLight 488 1:500 (Invitrogen, 35503). Coverslips were mounted using 512 

VECTASHIELD HardSet with DAPI and 425 images per section captured using a Zeiss Axio 513 

Scan.Z1 automated slide scanner equipped with a 20 x / 0.8 NA objective. β-cell mass (%) 514 

was calculated as the area of insulin-positive staining/area of the pancreas. Excitation was 515 

delivered at λ = 330-375 nm and λ = 590-650 nm for DAPI and Alexa Fluor 647, respectively. 516 
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Emitted signals were detected using an Orca Flash 4.0 at λ = 430-470 nm and λ = 663-738 517 

nm for DAPI and Alexa Fluor 647, respectively.  518 

Insulin secretion in vitro and insulin measurement 519 

Ten to fifteen size-matched islets were stimulated with: 3 mM glucose, 16.7 mM glucose and 520 

16.7 mM glucose + 20 nM Exendin-4 in HEPES-bicarbonate buffer (mM: 120 NaCl, 4.8 KCl, 521 

24 NaHCO3, 0.5 Na2HPO4, 5 HEPES, 2.5 CaCl2, 1.2 MgCl2; Sigma-Aldrich) supplemented with 522 

0.1% BSA at 37°C. Insulin content was extracted using acid ethanol. Insulin concentration 523 

(ng/ml) was measured using a HTRF Insulin Ultra-Sensitive Assay kit (Cisbio, 62IN2PEG). 524 

For experiments with exogenous lipids, islets were treated with either 0.75% bovine serum 525 

albumin (BSA) control, or 150 µM sodium palmitate dissolved in 0.75% BSA for 48-72 hrs 526 

before the secretion assay. This concentration and timing do not induce profound lipotoxicity 527 

in our hands, allowing the study of metabolic phenotype in the absence of β-cell failure. 528 

Live imaging 529 

Islets were loaded with the Ca2+ indicators Fluo8 (AAT Bioquest, 21083) or Fura2 (AAT 530 

Bioquest, 21020), before imaging using a Crest X-Light spinning disk microscope coupled to 531 

a Nikon Ti-E base with 10 x 0.4 NA and 20 x 0.8 NA objectives. For Fluo8 imaging, excitation 532 

was delivered at and λ = 458–482 nm using a Lumencor Spectra X light engine. Emission was 533 

captured at λ = 500-550 nm using a highly-sensitive Photometrics Delta Evolve EM-CCD. For 534 

experiments with the ratiometric Ca2+ indicator, Fura2, excitation was delivered at λ = 340 nm 535 

and λ = 385 nm using Cairn Research Fura LEDs in widefield mode, with emitted signals 536 

detected at λ = 470–550 nm.  537 

For ATP/ADP imaging, islets were transduced with the ATP/ADP sensor Perceval (a kind gift 538 

from Prof Gary Yellen, Harvard University, Boston, USA) (55) using an adenoviral vector and 539 

imaged identically to Fluo8. For FRET-based cAMP imaging, islets were infected with 540 

adenovirus harboring Epac2-camps (a kind gift from Prof Dermot Cooper, University of 541 

Cambridge, Cambridge, United Kingdom). Excitation was delivered at 430–450 nm, with 542 
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emission detected at and λ = 460–500 and and λ = 520–550 nm for Cerulean and Citrine, 543 

respectively. 544 

In all cases, HEPES-bicarbonate buffer was used (mM: 120 NaCl, 4.8 KCl, 24 NaHCO3, 0.5 545 

Na2HPO4, 5 HEPES, 2.5 CaCl2, 1.2 MgCl2, and 3–17 D-glucose), with glucose and drugs 546 

(Exendin-4, Sigma-Aldrich E144-.1MG and etomoxir, Sigma-Aldrich E1905-5MG) being 547 

added at the indicated concentrations and timepoints. Fura2 and Epac2-camps traces were 548 

normalized as the ratio of 340/385 or Cerulean/Citrine, respectively. Data were presented as 549 

raw or F/Fmin where F = fluorescence at any timepoint and Fmin = minimum fluorescence, or 550 

R/R0 where R = fluorescence at any timepoint and R0 = fluorescence at 0 mins. 551 

Glucose oxidation assays and metabolic tracing  552 

14C glucose oxidation and lipid incorporation: batches of 40 islets were used for quantification 553 

of 14C glucose (Perkin-Elmer) oxidation and incorporation into lipids by scintillation 554 

spectrometry, as previously described (43).  555 

Gas chromatography–mass spectrometry (GC-MS)-based 13C6 mass isotopomer distribution: 556 

To ensure steady state, 50-100 islets were cultured with 10 mM 13C6-[U]-glucose (Sigma-557 

Aldrich, 389374) for 24 hrs (56), before extraction of metabolites using sequentially pre-chilled 558 

HPLC-grade methanol, HPLC-grade distilled H2O containing 1 μg/mL D6-glutaric acid and 559 

HPLC-grade chloroform at -20 ˚C (all from Sigma-Aldrich). Polar fractions were separated by 560 

centrifugation, vacuum dried and solubilized in 2% methoxyamine hydrochloric acid in pyridine 561 

(Fisher Scientific). Samples were derivatized using N-tertbutyldimethylsilyl-N-562 

methyltrifluoroacetamide (MTBSTFA) with 1% (w/v) tertbutyldimethyl-chlorosilane (TBDMCS) 563 

(both from Sigma-Aldrich), before analysis on an Agilent 7890B gas chromatograph mass 564 

spectrometer, equipped with a medium polar range polydimethylsiloxane GC column (DB35-565 

MS). Mass isotopomer distributions (MIDs) were determined based upon spectra corrected 566 

for natural isotope abundance. Data were analyzed using MetaboliteDetector software (57). 567 

D31-palmitate incorporation and oxidation assays  568 
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For D31-palmitate tracing, 140 islets per genotype were cultured at 5% CO2, 37°C, in a 569 

solution of 150 μM D31-palmitic acid (98%; Cambridge Isotope Laboratories, DLM-215-1), 570 

dissolved in RPMI supplemented with 10% FBS, 100 units/mL penicillin, 100 μg/mL 571 

streptomycin and 10% BSA. At 2 hrs and 16 hrs post-incubation, 70 islets per genotype were 572 

collected in 250 μL of PBS and lysed prior to DNA quantification and freezing at -20°C. A  200 573 

μL aliquot of D31-palmitate-labelled solution was also collected and stored at -20°C. Similarly, 574 

upon overnight incubation, the remaining islets were collected in PBS, lysed and the DNA was 575 

quantified. The leftover labeling solution was also collected and frozen at -20°C for measures 576 

of background signal.  577 

Total lipids were extracted from cell lysates (58) and prepared and analyzed by a 6890N 578 

Network GC System (Agilent Technologies; CA, USA) as previously described (59). An 579 

internal standard containing a known concentration was added to samples for the 580 

quantification of total fatty acids. Fatty acid methyl esters were identified by their retention 581 

times compared to a standard containing 31 known FAs. Intracellular D31 enrichment was 582 

determined by GC-mass spectrometry (GC-MS) using a 5890 GC coupled to a 5973N MSD 583 

(Agilent Technologies; CA, USA). Ions with mass-to-charge ratios (m/z) of M+0 and M+31 584 

were determined by selected ion monitoring. As a marker of fatty acid oxidation, we measured 585 

the appearance of 2H2O derived from D31-palmitate in cell media using a Finnigan GasBench-586 

II (ThermoFisher Scientific, UK) (60). 587 

Visualization of transcriptomic datasets 588 

Details of the RNA-seq and ChIP-seq experiments, as well as human islet donors, are 589 

previously described (48, 61-63). All transcriptomic datasets used to generate Supplementary 590 

figure 1A and B are publicly available through EMBL-EBI and GEO databases, and freely-591 

accessible through www.isletregulome.com. For visualization, processed RNA-sequencing 592 

and ChIP-seq (bigwig) data files were downloaded (EBI: E-MTAB-1919, E-MTAB-1294 and 593 
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GEO:GSE151405) and loaded onto the local open source University of California Santa Cruz 594 

(UCSC) Genome Browser (http://genome.ucsc.edu/) (64), under a private session.  595 

Statistics 596 

Measurements were performed on discrete samples unless otherwise stated. Data normality 597 

was assessed using D’Agostino-Person test. All analyses were conducted using GraphPad 598 

Prism software. Pairwise comparisons were made using Student’s two-tailed unpaired or 599 

paired t-test. Multiple interactions were determined using one-way ANOVA or two-way 600 

ANOVA, adjusted for repeated measures where relevant. Pairwise post-hoc testing was 601 

performed using Sidak’s test, or Tukey’s test where more than two groups were considered. 602 

Where a highly significant interaction was detected using two-way ANOVA, but post-hoc 603 

testing was just above P = 0.05, multiple comparisons were accounted for using the false 604 

discovery rate followed by the two-stage linear step-up method of Benjamini, Krieger and 605 

Yekutieli. For non-parametric multiple comparison, Kruskal-Wallis test was used followed by 606 

Dunn’s post hoc test. Degrees of freedom were accounted for during all post-hoc testing. A P 607 

value less than 0.05 was considered significant. 608 

Data availability 609 

The datasets generated and/or analyzed during the current study are available from the 610 

corresponding author upon reasonable request. 611 

Study approval 612 

Animal studies were regulated by the Animals (Scientific Procedures) Act 1986 of the U.K. 613 

(Personal Project License P2ABC3A83), and approval was granted by the University of 614 

Birmingham’s Animal Welfare and Ethical Review Body. 615 
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57. Hiller K, Hangebrauk J, Jäger C, Spura J, Schreiber K, and Schomburg D. 800 

MetaboliteDetector: Comprehensive Analysis Tool for Targeted and Nontargeted 801 

GC/MS Based Metabolome Analysis. Analytical Chemistry. 2009;81(9):3429-39. 802 

58. Folch J, Lees M, and Sloane Stanley GH. A simple method for the isolation and 803 

purification of total lipides from animal tissues. J Biol Chem. 1957;226(1):497-509. 804 

59. Gunn PJ, Green CJ, Pramfalk C, and Hodson L. In vitro cellular models of human 805 

hepatic fatty acid metabolism: differences between Huh7 and HepG2 cell lines in 806 

human and fetal bovine culturing serum. Physiol Rep. 2017;5(24):e13532. 807 

60. Law LK, Tang NL, Hui J, Ho CS, Ruiter J, Fok TF, et al. A novel functional assay for 808 

simultaneous determination of total fatty acid beta-oxidation flux and acylcarnitine 809 

profiling in human skin fibroblasts using (2)H(31)-palmitate by isotope ratio mass 810 

spectrometry and electrospray tandem mass spectrometry. Clin Chim Acta. 811 

2007;382(1-2):25-30. 812 

61. Akerman I, Tu Z, Beucher A, Rolando DMY, Sauty-Colace C, Benazra M, et al. 813 

Human Pancreatic beta Cell lncRNAs Control Cell-Specific Regulatory Networks. 814 

Cell Metab. 2017;25(2):400-11. 815 

62. Pasquali L, Gaulton KJ, Rodríguez-Seguí SA, Mularoni L, Miguel-Escalada I, 816 

Akerman İ, et al. Pancreatic islet enhancer clusters enriched in type 2 diabetes risk-817 

associated variants. Nature Genetics. 2014;46(2):136-43. 818 

63. Akerman I, Maestro MA, De Franco E, Grau V, Flanagan S, Garcia-Hurtado J, et al. 819 

Neonatal diabetes mutations disrupt a chromatin pioneering function that activates 820 

the human insulin gene. Cell Rep. 2021;35(2):108981. 821 



34 
 

64. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, et al. The 822 

Human Genome Browser at UCSC. Genome Research. 2002;12(6):996-1006. 823 

  824 



35 
 

FIGURES AND LEGENDS 825 

 826 

Figure 1: Generation and validation of mice lacking PHD3 in pancreatic β-cells. (A) 827 
Confirmation of recombination efficiency in Ins1Cre islets using R26-LSL-hM4Di/mCitrine 828 
mice expressing an mCitrine reporter (representative image shown, scale bar = 42.5 µm). (B) 829 
Percentage of insulin–positive (INS+) cells expressing mCitrine (i.e. recombined) in Ins1Cre+/-830 
;h4MDifl/- islets (n = 15 islets). (C) Egln3 expression is reduced in islets of βPHD3KO mice 831 
versus control (βPHD3CON) littermates (n = 6-8 animals, unpaired t-test). (D and E) Egln1 832 
(D) and Egln2 (E) expression levels are similar in βPHD3CON and βPHD3KO islets (n = 6 833 
animals, unpaired t-test). (F) PHD3 is detected in the β-cell compartment of βPHD3CON but 834 
not βPHD3KO islets. Arrows show PHD3 expression in non β-cells (representative images 835 
shown, scale bar = 42.5 µm) (n = 3 animals/genotype). Data shown are mean ± SEM. *P<0.05, 836 
**P<0.01 and NS, non-significant. Egln1/Egln2/Egln3, Eglnine homolog 1-3 genes; PHD3, 837 
prolyl-hydroxylase 3. 838 
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 839 

Figure 2: βPHD3KO in vivo phenotype under standard chow conditions. (A and B) Male 840 
(A) and female (B) βPHD3CON and βPHD3KO mice possess similar adult body weight (n = 841 
8-10 male and 15 female animals/genotype, two-way RM ANOVA; Sidak’s test). (C and D) No 842 
differences in glucose tolerance and AUC are detected between βPHD3CON and βPHD3KO 843 
male (C) (n = 13 animals/genotype) and female (D) (n = 10 animals/genotype) 8-week-old 844 
mice (two-way RM ANOVA, Sidak’s test) (AUC: unpaired t-test). (E and F) No differences in 845 
glucose tolerance and AUC during IPGTT are detected between βPHD3CON and βPHD3KO 846 
male (E) and female (F) 20-week-old mice (n = 8-16 male and 8 female animals/genotype; 847 
two-way RM ANOVA, Sidak’s test) (AUC: unpaired t-test). (G and H) Oral glucose tolerance 848 
and AUC are also unchanged in βPHD3KO versus βPHD3CON male (G) and female (H) 8-849 
week-old mice (n = 3-5 male and 4 female animals/genotype; two-way RM ANOVA, Sidak’s 850 
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test) (AUC: unpaired t-test). (I and J) Insulin sensitivity and AUC are similar in βPHD3CON 851 
and βPHD3KO male (I) and female (J) 8-week old mice (n = 6-7 male and 4-7 female 852 
animals/genotype; two-way RM ANOVA, Sidak’s test) (AUC: unpaired t-test). (K-M) Cell 853 
resolution reconstruction of entire pancreatic sections shows no differences in islet size and 854 
β-cell mass between βPHD3CON and βPHD3KO mice. Quantification is shown in (K and L), 855 
with representative images in (M) (scale bar = 530 µm) (zoom showing maintenance of cellular 856 
resolution in a single image) (K; n = 3 animals/genotype, two-way ANOVA; Sidak’s test) (L; n 857 
= 3 animals/genotype, unpaired t-test). Data shown are mean ± SEM. *P<0.05, **P<0.01 and 858 
NS, non-significant. IPGTT, intraperitoneal glucose tolerance test; OGTT, oral glucose 859 
tolerance test; AUC, area under the curve. 860 
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 866 

 867 
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869 
Figure 3: βPHD3KO in vitro phenotype under standard chow conditions. (A) Expression 870 
of the β-cell-specific markers Pdx1, Mafa and Nkx6.1 is similar in βPHD3CON and βPHD3KO 871 
islets (n = 6-7 animals, unpaired t-test). (B and C) Glucose- and KCl-stimulated Ca2+ rises do 872 
not differ in islets of βPHD3CON and βPHD3KO mice, shown by mean traces (B), and 873 
summary bar graph (C) (n = 38-48 islets, 4-5 animals/genotype; two-way ANOVA, Sidak’s 874 
test). (D and E) Glucose-stimulated ATP/ADP rises are similar in βPHD3CON and βPHD3KO 875 
islets, shown by mean traces (D) and summary bar graph (E) (representative images shown; 876 
a single islet has been cropped for clarity) (n = 36-39 islets, 4-5 animals/genotype, unpaired t-877 
test). (F and G) cAMP responses to Ex4 do not differ between βPHD3CON and βPHD3KO 878 
islets, shown by (F) mean traces and (G) summary bar graph (representative images shown; 879 
a single islet has been cropped for clarity) (n = 50 islets, 4-5 animals/genotype, unpaired t-880 
test). (H) Glp1r expression is similar in βPHD3CON and βPHD3KO islets (n = 4 881 
animals/genotype, unpaired t-test). (I) Insulin secretory responses to glucose and Exendin-4 882 
show no differences between βPHD3CON and βPHD3KO islets (n = 29 replicates, 6 883 
animals/genotype, two-way ANOVA; Sidak’s test). (J) Total insulin content also remained 884 
similar between groups (n = 29 replicates, 6 animals/genotype; unpaired t-test). Data shown 885 
are mean± SEM. *P<0.05, **P<0.01 and NS, non-significant. G3, 3 mM glucose; G16.7, 16.7 886 
mM glucose; G17, 17 mM glucose. 887 
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890 
Figure 4: βPHD3KO in vivo and in vitro phenotype during early metabolic stress (4 891 
weeks HFD). (A) Egln3 is upregulated in 4 weeks HFD βPHD3CON, but not βPHD3KO islets 892 
(n = 3-6 animals/genotype; unpaired t-test). (B and C) Glucose tolerance (B) is impaired in 893 
male βPHD3KO mice at 4 weeks HFD, although fasting glucose levels (C) are unaffected by 894 
72 hrs HFD (n = 8-11 animals/genotype; two-way RM ANOVA, Sidak’s test). (D) Body weight 895 
is similar in male HFD-fed βPHD3CON and βPHD3KO animals (n = 11-12 animals/genotype; 896 
two-way RM ANOVA. Sidak’s test). Body weight data from Figure 2A is included for 897 
comparison. (E) Glucose tolerance is unaffected in male Cre-only and Egln3fl/fl-only controls 898 
(n = 10-13 animals/genotype; two-way RM ANOVA, Tukey’s test). (F) Serum insulin levels 899 
post-glucose are similar in βPHD3CON and βPHD3KO mice (n = 7-13 mice/genotype; two-900 
way RM ANOVA, Sidak’s test). (G) Insulin responses to glucose, shown by stimulation index, 901 
are higher in male βPHD3KO mice (n = 7-13 animals/genotype; two-way RM ANOVA, Sidak’s 902 
test). (H and I) Glucose- and Exendin-4-potentiated insulin secretion is increased in βPHD3KO 903 
islets(H) (n = 20 replicates, 4 animals/genotype; two-way ANOVA, Sidak’s test), while insulin 904 
content (I) remains unchanged (n = 20 replicates, 4 mice/genotype; unpaired t-test). (J) 905 
βPHD3CON and βPHD3KO mice show similar oral glucose tolerance (n = 7 906 
animals/genotype; two-way RM ANOVA, Sidak’s test). (K) No changes in body compostion 907 
are seen in βPHD3KO vs βPHD3CON mice (n = 4 animals/genotype; two-way ANOVA, 908 
Sidak’s test). (L) Insulin sensitivity remains unchanged in βPHD3KO mice (n = 4-5 909 
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animals/genotype; two-way RM ANOVA, Sidak’s test). Data shown are mean ± SEM. *P<0.05, 910 
**P<0.01 and NS, non-significant. VAT/SAT/BAT, visceral/subcutaneous/brown adipose 911 
tissue. 912 

 913 
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 915 

Figure 5: Metabolic rewiring in βPHD3KO islets during metabolic stress. (A-C) βPHD3KO 916 
islets possess intact glucose oxidation (A), but impaired accumulation of glycolytic/TCA cycle 917 
metabolites (B) and glucose-driven lipogenesis (C) following 4 weeks of HFD (n = 3 islet 918 
preparations, 3 animals/genotype; two-way ANOVA, Benjamini- Krieger-Yekutieli two-stage 919 
procedure). (D) Schematic showing 13C from 13C6-[U]-glucose incorporation into metabolites 920 
in βPHD3CON and βPHD3KO islets. (E-I) Mass isotopomer distributions (MID) showing that 921 
13C incorporation from glucose into aspartate (E), glutamate (F), malate (G), fumarate (H) or 922 
citrate (I) is similar in SC and HFD βPHD3CON and βPHD3KO islets (n = 6 islet preparations, 923 
3 animals/genotype, two-way ANOVA, Tukey’s test). (J) 13C from 13C6-[U]-glucose is 924 
incorporated primarily into m+2 lactate in SC βPHD3CON and βPHD3KO islets, whereas a 925 
shift to m+3 lactate is seen during 4 weeks HFD (n = 6 islet preparations, 3 animals/genotype; 926 
two-way ANOVA, Tukey’s test). (K) Steady-state lactate levels are increased in βPHD3KO 927 
versus βPHD3CON islets following 4 weeks HFD (n = 6 islet preparations, n = 3 928 
animals/genotype; one-way ANOVA, Sidak’s test). (L) Ldha expression is not significantly 929 
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different in SC and HFD βPHD3KO and βPHD3CON islets (n = 8-9 animals/genotype; 930 
Dunnett’s test). Data shown are mean ± SEM. *P<0.05, **P<0.01 and NS, non-significant.  931 

 932 
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 934 

Figure 6: Nutrient preference is altered in βPHD3KO islets during early metabolic stress 935 
(4 weeks HFD). (A) Palmitate (Palm) enhances glucose- and Exendin-4-stimulated insulin 936 
secretion in βPHD3KO islets (n = 12-17 replicates, 7-9 animals/genotype; two-way ANOVA, 937 
Benjamini- Krieger-Yekutieli two-stage procedure) (BSA, bovine serum albumin). (B) As for 938 
(A), but showing glucose and Exendin-4 response in βPHD3CON islets (n = 13-17 replicates, 939 
7-9 animals/genotype; two-way, ANOVA, Benjamini- Krieger-Yekutieli two-stage procedure). 940 
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(C) Etomoxir (ETX) increases glucose-stimulated ATP/ADP ratio in βPHD3KO islets 941 
(representative images show a single islet) (n = 27-45 islets, 5-6 animals/genotype; two-way 942 
ANOVA, Sidak’s test). (D) Cpt1a expression is similar in βPHD3KO and βPHD3CON islets (n 943 
= 6 animals/genotype; unpaired t-test). (E and F) Palmitate impairs Ca2+ responses to glucose 944 
in βPHD3KO islets, shown by mean traces (E) and bar graphs (F) (n = 13-15 islets, 2-3 945 
animals/genotype, unpaired t-test). (G and H) Glucose- and KCl-stimulated Ca2+ rises are 946 
similar to controls (glucose), or increased (KCl), in βPHD3KO islets, shown by mean traces 947 
(G) and a bar graph (H) (n = 26-33 islets, 6 animals/genotype; two-way ANOVA, Sidak’s test). 948 
(I) 2H20/D31-palmitate ratio is increased in βPHD3KO islets (n = 5-6 animals) (within 949 
genotype: unpaired t-test) (between genotype: two-way ANOVA, Sidak’s test). (J) D31-950 
palmitate tracer uptake is similar in βPHD3CON and βPHD3KO islets (n = 5-6 animals; two-951 
way ANOVA, Sidak’s test). (K and L) ATP/ADP rises are impaired in βPHD3KO islets, shown 952 
by mean traces (K), bar graph and representative images (L) (single islet  shown) (n = 13-15 953 
islets, 4 animals/genotype, unpaired t-test). (M) Steady-state pyruvate levels are decreased 954 
in βPHD3KO islets (n = 11-13 replicates, 5-8 animals/genotype; Mann-Whitney test). (N) Low 955 
glucose pre-incubation decreases glucose-stimulated insulin secretion in SC βPHD3KO islets 956 
(n = 14-15 replicates, 6 animals/genotype; two-way ANOVA, Sidak’s test). Data shown are 957 
mean ± SEM. *P<0.05, **P<0.01 and NS, non-significant.  958 

 959 
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 961 

Figure 7: Prolonged metabolic stress (8 weeks HFD) leads to insulin secretory failure 962 
in βPHD3KO islets. (A and B) Acaca (A) and Acacb (B) expression is similar in βPHD3KO 963 
and βPHD3CON HFD islets (n = 6 animals; unpaired t-test). (C) Glucose tolerance remains 964 
impaired in 8 weeks HFD βPHD3KO mice  (n = 9-11 animals/genotype (two-way RM ANOVA, 965 
Sidak’s test) (AUC: unpaired t-test). (D) Insulin sensitivity is unchanged in βPHD3KO mice (n 966 
= 5 animals/genotype, two-way RM ANOVA; Sidak’s test) (AUC: unpaired t-test). (E) Oral 967 
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glucose tolerance is normal in βPHD3KO mice (n = 6-7 animals/genotype; two-way RM 968 
ANOVA, Sidak’s test) (AUC: unpaired t-test). (F) Body composition is unchanged in βPHD3KO 969 
mice (n = 5 animals/genotype; two-way ANOVA, Sidak’s test). (G and H) Glucose-stimulated 970 
insulin secretion (G) is impaired in 8 weeks HFD βPHD3KO islets (n = 29-32 replicates, 4 971 
animals/genotype; two-way ANOVA, Sidak’s test), despite similar insulin content (H) (16-18 972 
replicates, 4 mice/genotype; unpaired t-test). (I and J) Glucose- and KCl-stimulated Ca2+ rises 973 
are impaired in βPHD3KO islets, shown by mean traces (I) and quantification (J) (n = 21-24 974 
islets, 2 animals/genotype; two-way ANOVA, Sidak’s test). (K and L) Apoptosis is increased 975 
in βPHD3KO islets, shown by quantification (K) and representative images (L) (n = 8-9 islets; 976 
unpaired t-test). (M) Ddit3, Xbp1 and Hspa5 expression shows no changes in βPHD3KO islets 977 
(n = 6-7 animals/genotype; unpaired t-test). (N-Q) Islet proliferation (PCNA; N and O) and α-978 
cell/β-cell ratio (P and Q) are unchanged in βPHD3KO islets (n = 11-18 islets, 3-4 979 
animals/genotype; unpaired t-test). (R-T) Images (R) and quantification (S and T) showing 980 
increased β-cell mass in βPHD3KO mice (scale bar = 530 µm) (n = 3 animals/genotype, two-981 
way ANOVA; unpaired t-test). Data shown are mean ± SEM. *P<0.05, **P<0.01 and NS, non-982 
significant. Scale bar = 42.5 µm unless otherwise stated.  983 
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Figure 8: Schematic showing the proposed changes that occur in PHD3KO islets 987 
following high fat diet. In βPHD3CON islets, glucose is converted to pyruvate, before 988 
entering the TCA cycle to drive ATP production and insulin secetion. PHD3 activity leads to 989 
generation of malonyl-CoA, which inhibits CPT1 to suppress oxidation of fatty acids. By 990 
contrast, in βPHD3KO islets, CPT1 is no longer inhibited, allowing beta oxidation of fatty acids 991 
to procede. As a result, fatty acid-derived acetyl-CoA feeds the TCA cycle and generates 992 
ATP/ADP, whilst glycolytically-derived pyruvate is converted to lactate to maintain REDOX 993 
status.  994 
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