1,296 research outputs found
Usability of the SedLine® electroencephalographic monitor of depth of anaesthesia in pigs: a pilot study.
To investigate the usability of the SedLine® monitor in anaesthetized pigs. Five juvenile healthy pigs underwent balanced isoflurane-based general anaesthesia for surgical placement of a subcutaneous jugular venous port. The SedLine® was applied to continuously monitor electroencephalographic (EEG) activity and its modulation during anaesthesia. Computer tomography and magnetic resonance were performed to investigate the relationship between electrodes' positioning and anatomical structures. The pediatric SedLine® EEG-sensor could be easily applied and SedLine®-generated variables collected. An EEG Density Spectral Array (DS) was displayed over the whole procedure. During surgery, the EEG signal was dominated by elevated power in the delta range (0.5-4 Hz), with an underlying broadband signal (where power decreased with increasing frequency). The emergence period was marked by a decrease in delta power, and a more evenly distributed power over the 4-40 Hz frequency range. From incision to end of surgery, mean SedLine®-generated values (± standard deviation) were overall stable [23.0 (± 2.8) Patient State Index (PSI), 1.0% (± 3.8%) Suppression Ratio (SR), 8.8 Hz (± 2.5 Hz) Spectral Edge Frequency 95% (SEF) left, 7.7 Hz (± 2.4 Hz) SEF right], quickly changing during emergence [75.3 (± 11.1) PSI, 0.0 (± 0.0) SR, 12.5 (± 6.6) SEF left 10.4 (± 6.6) SEF right]. Based on the imaging performed, the sensor does not record EEG signals from the same brain areas as in humans. SedLine®-DSA and -generated variables seemed to reflect variations in depth of anaesthesia in pigs. Further studies are needed to investigate this correlation, as well as to define the species-specific brain structures monitored by the EEG-sensor
Particle Aggregation in a turbulent Keplerian flow
In the problem of planetary formation one seeks a mechanism to gather small
solid particles together into larger accumulations of solid matter. Here we
describe a scenario in which turbulence mediates this process by aggregating
particles into anticyclonic regions. If, as our simulations suggest,
anticyclonic vortices form as long-lived coherent structures, the process
becomes more powerful because such vortices trap particles effectively. Even if
the turbulence is decaying, following the upheaval that formed the disk, there
is enough time to make the dust distribution quite lumpy.Comment: 16 pages, 9 figure
L’ASPRO: un exemple d’interface cartographique pour la consultation d’un corpus archéologique
The Atlas of Near Eastern sites (ASPRO - Atlas des Sites du Proche-Orient) is an analytical index of nearly 2000 archaeological sites occupied between 14,000 and 5700 BP (about 14,000-4500 BC) in an area extending from the Sinai to Turkmenistan and from Anatolia to the Arabian-Persian Gulf. Its objective is to propose consistent information concerning a wide area and a long period of time, based on evidence which is often difficult to access, and to free this information from the compartmentalization of knowledge. This corpus, which was published in 1994 in book form, and is now out of print, has recently been made available online in an interactive cartographic interface, at the following address: http://www.mom.fr/Aspro/login.jsp. The objective of this development is to sustain consultation of the corpus, to increase its diffusion, while offering new functionalities with more flexibility: consultation through different entries, including the cartographic entry. Thus, it will now be possible to respond to requests on the different tables which compose the base (sites, periods, bibliography, dating), and to display the results in the form of an interactive list (access to files) and in cartographic form. The display is presented in different scales and the sites may be visualized on several thematic maps (hypsometry, pluviometry, bio-geographic zones). The latter also enable selection by spatial intersection. The technical system is now in place, and the project can proceed to a new stage: the updating of the corpus through sharing of information, then validation by a group of specialists
Large-scale instability in a sheared nonhelical turbulence: formation of vortical structures
We study a large-scale instability in a sheared nonhelical turbulence that
causes generation of large-scale vorticity. Three types of the background
large-scale flows are considered, i.e., the Couette and Poiseuille flows in a
small-scale homogeneous turbulence, and the "log-linear" velocity shear in an
inhomogeneous turbulence. It is known that laminar plane Couette flow and
antisymmetric mode of laminar plane Poiseuille flow are stable with respect to
small perturbations for any Reynolds numbers. We demonstrate that in a
small-scale turbulence under certain conditions the large-scale Couette and
Poiseuille flows are unstable due to the large-scale instability. This
instability causes formation of large-scale vortical structures stretched along
the mean sheared velocity. The growth rate of the large-scale instability for
the "log-linear" velocity shear is much larger than that for the Couette and
Poiseuille background flows. We have found a turbulent analogue of the
Tollmien-Schlichting waves in a small-scale sheared turbulence. A mechanism of
excitation of turbulent Tollmien-Schlichting waves is associated with a
combined effect of the turbulent Reynolds stress-induced generation of
perturbations of the mean vorticity and the background sheared motions. These
waves can be excited even in a plane Couette flow imposed on a small-scale
turbulence when perturbations of mean velocity depend on three spatial
coordinates. The energy of these waves is supplied by the small-scale sheared
turbulence.Comment: 12 pages, 14 figures, Phys. Rev. E, in pres
Detection of a transit of the super-Earth 55 Cnc e with Warm Spitzer
We report on the detection of a transit of the super-Earth 55 Cnc e with warm
Spitzer in IRAC's 4.5-micron band. Our MCMC analysis includes an extensive
modeling of the systematic effects affecting warm Spitzer photometry, and
yields a transit depth of 410 +- 63 ppm, which translates to a planetary radius
of 2.08 +- 0.16 R_Earth as measured in IRAC 4.5-micron channel. A planetary
mass of 7.81 +- 0.58 M_Earth is derived from an extensive set of
radial-velocity data, yielding a mean planetary density of 4.8 +- 1.3 g cm-3.
Thanks to the brightness of its host star (V = 6, K = 4), 55 Cnc e is a unique
target for the thorough characterization of a super-Earth orbiting around a
solar-type star.Comment: Accepted for publication in A&A on 31 July 2011. 9 pages, 7 figures
and 3 tables. Minor changes. The revised version includes a baseline models
comparison and a new figure presenting the spatially- and time-dependent
terms of the model function used in Eq.
Could we identify hot Ocean-Planets with CoRoT, Kepler and Doppler velocimetry?
Planets less massive than about 10 MEarth are expected to have no massive
H-He atmosphere and a cometary composition (50% rocks, 50% water, by mass)
provided they formed beyond the snowline of protoplanetary disks. Due to inward
migration, such planets could be found at any distance between their formation
site and the star. If migration stops within the habitable zone, this will
produce a new kind of planets, called Ocean-Planets. Ocean-planets typically
consist in a silicate core, surrounded by a thick ice mantle, itself covered by
a 100 km deep ocean. The existence of ocean-planets raises important
astrobiological questions: Can life originate on such body, in the absence of
continent and ocean-silicate interfaces? What would be the nature of the
atmosphere and the geochemical cycles ?
In this work, we address the fate of Hot Ocean-Planets produced when
migration ends at a closer distance. In this case the liquid/gas interface can
disappear, and the hot H2O envelope is made of a supercritical fluid. Although
we do not expect these bodies to harbor life, their detection and
identification as water-rich planets would give us insight as to the abundance
of hot and, by extrapolation, cool Ocean-Planets.Comment: 47 pages, 6 Fugures, regular paper. Submitted to Icaru
Thermodynamics, Disequilibrium, Evolution: Far-From-Equilibrium Geological and Chemical Considerations for Origin-Of-Life Research
The authors wish to thank the Earth-Life Science Institute of the Tokyo Institute of Technology for supporting and hosting the TDE Focus Group meeting on which this publication is based. The Thermodynamics,
Disequilibrium, Evolution (TDE) Focus Group is supported by the NASA Astrobiology Institute (NAI). Parts of this work were carried out at the Jet Propulsion Laboratory, California Institute of Technology under a contract
with the National Aeronautics and Space Administration; LMB and MJR are supported by NAI (Icy Worlds). ES thanks the ORIGINS COST Action (TD1308) for the STSM Reference Number: COST-STSM-TD1308-26973.
ES is supported by Agreement ASI/INAF 2015 - 002 - R.O. JHEC acknowledges the financial support of the Spanish MINCINN project FIS2013-48444-C2-2-P
The extreme physical properties of the CoRoT-7b super-Earth
International audience► Here, we discuss the extreme physical properties possible for the first characterized rocky super-Earth, CoRoT-7b ( = 1.58 , = 5.7 ). ► We make the working hypothesis that the planet is rocky with no volatiles in its atmosphere, and derive the physical properties that result. ► The dayside is very hot (2500 K at the sub-stellar point) while the nightside is very cold (∼ 50 K). The sub-stellar point is as hot as the tungsten filament of an incandescent bulb, resulting in the melting and distillation of silicate rocks and the formation of a lava ocean. ► These possible features of CoRoT-7b should be common to many small and hot planets, including Kepler-10b. They define a new class of objects that we propose to name ''Lava-ocean planets''
Transit Photometry as an Exoplanet Discovery Method
Photometry with the transit method has arguably been the most successful
exoplanet discovery method to date. A short overview about the rise of that
method to its present status is given. The method's strength is the rich set of
parameters that can be obtained from transiting planets, in particular in
combination with radial velocity observations; the basic principles of these
parameters are given. The method has however also drawbacks, which are the low
probability that transits appear in randomly oriented planet systems, and the
presence of astrophysical phenomena that may mimic transits and give rise to
false detection positives. In the second part we outline the main factors that
determine the design of transit surveys, such as the size of the survey sample,
the temporal coverage, the detection precision, the sample brightness and the
methods to extract transit events from observed light curves. Lastly, an
overview over past, current and future transit surveys is given. For these
surveys we indicate their basic instrument configuration and their planet
catch, including the ranges of planet sizes and stellar magnitudes that were
encountered. Current and future transit detection experiments concentrate
primarily on bright or special targets, and we expect that the transit method
remains a principal driver of exoplanet science, through new discoveries to be
made and through the development of new generations of instruments.Comment: Review chapte
From chemical gardens to chemobrionics
Chemical gardens in laboratory chemistries ranging from silicates to polyoxometalates, in applications ranging from corrosion products to the hydration of Portland cement, and in natural settings ranging from hydrothermal vents in the ocean depths to brinicles beneath sea ice. In many chemical-garden experiments, the structure forms as a solid seed of a soluble ionic compound dissolves in a solution containing another reactive ion. In general any alkali silicate solution can be used due to their high solubility at high pH. The cation should not precipitate with the counterion of the metal salt used as seed. A main property of seed chemical-garden experiments is that initially, when the fluid is not moving under buoyancy or osmosis, the delivery of the inner reactant is diffusion controlled. Another experimental technique that isolates one aspect of chemical-garden formation is to produce precipitation membranes between different aqueous solutions by introducing the two solutions on either side of an inert carrier matrix. Chemical gardens may be grown upon injection of solutions into a so-called Hele-Shaw cell, a quasi-two-dimensional reactor consisting in two parallel plates separated by a small gap
- …