115 research outputs found

    Population structure of the recent invader Hemigrapsus takanoi and prey size selection on Baltic Sea mussels

    Get PDF
    The shore crab Hemigrapsus takanoi Asakura and Watanabe, 2005, native to the Northwest Pacific, was recorded in European waters about 25 years ago and it was first found in the Baltic Sea in 2014. Information on population structure of invaders and their new niche is needed in order to understand their biological impact. Over one year, we assessed temporal changes in relative abundance, size-class and sex ratio, as well as breeding season of H. takanoi in the Kiel Fjord (Western Baltic Sea). In addition, prey size preference and consumption rates on mussels (Mytilus edulis Linnaeus, 1758) were experimentally assessed in spring, summer and autumn. A total of 596 individuals were collected with highest and lowest abundances in June and February, respectively. Females were dominant over males (sex ratio 1.4:1), but males grew to larger sizes. H. takanoi reproduced between June and August with ovigerous females representing 30% of the entire female abundance registered over the entire year. Males were able to open larger mussels (due to larger claws) and consumed twice as many mussels when compared to females of similar size. Consumption rates for males were 6 and 2 times higher in summer (seawater temperature of 19 °C) compared to spring (8 °C) and autumn (13 °C), respectively. Females consumed 3 times more mussels in autumn than in spring. H. takanoi is an active predator, capable of reproduction in stressful brackish water conditions. Due to large abundances and high feeding pressure, this recently introduced species could play a key role in structuring post-settlement population dynamics of the dominant habitat builder M. edulis

    Thymidylate synthase gene variants as predictors of clinical response and toxicity to fluoropyrimidine-based chemotherapy for colorectal cancer

    Get PDF
    Abstract Background: Fluoropyrimidines form the chemotherapy backbone of advanced and metastatic colorectal cancer (CRC). These drugs are frequently associated with toxicity events that result in dose adjustments and even suspension of the treatment. The thymidylate synthase (TYMS) gene is a potential marker of response and toxicity to fluoropyirimidines as this enzyme is the molecular target of these drugs. Our aim was to assess the association between variants of TYMS with response and toxicity to fluoropyrimidines in patients with CRC in independent retrospective and prospective studies. Methods: Variants namely rs45445694, rs183205964, rs2853542 and rs151264360 of TYMS were genotyped in 105 CRC patients and were evaluated to define their association with clinical response and toxicity to fluoropyrimidines. Additionally, the relationship between genotypes and tumor gene expression was analyzed by quantitative polymerase chain reaction. Results: The 2R/2R (rs45445694) was associated with clinical response (p = 0.05, odds ratio (OR) = 3.45) and severe toxicity (p = 0.0014, OR = 5.21, from pooled data). Expression analysis in tumor tissues suggested a correlation between the 2R/2R genotype and low TYMS expression. Conclusions: The allele 2R (rs45445694) predicts severe toxicity and objective response in advanced CRC patients. In addition, the alleles G(rs2853542) and 6bp-(rs151264360) are independent predictors of response failure to chemotherapy. This is the first study made on a Latin American population that points out TYMS gene variants have predictive values for response and toxicity in patients with CRC treated with fluoropyrimidine-based chemotherapy

    Geographic variation in fitness-related traits of the bladderwrack Fucus vesiculosus along the Baltic Sea-North Sea salinity gradient

    Get PDF
    In the course of the ongoing global intensification and diversification of human pressures, the study of variation patterns of biological traits along environmental gradients can provide relevant information on the performance of species under shifting conditions. The pronounced salinity gradient, co-occurrence of multiple stressors, and accelerated rates of change make the Baltic Sea and its transition to North Sea a suitable region for this type of study. Focusing on the bladderwrack Fucus vesiculosus, one of the main foundation species on hard-bottoms of the Baltic Sea, we analyzed the phenotypic variation among populations occurring along 2,000 km of coasts subjected to salinities from 4 to >30 and a variety of other stressors. Morphological and biochemical traits, including palatability for grazers, were recorded at 20 stations along the Baltic Sea and four stations in the North Sea. We evaluated in a common modeling framework the relative contribution of multiple environmental drivers to the observed trait patterns. Salinity was the main and, in some cases, the only environmental driver of the geographic trait variation in F. vesiculosus. The decrease in salinity from North Sea to Baltic Sea stations was accompanied by a decline in thallus size, photosynthetic pigments, and energy storage compounds, and affected the interaction of the alga with herbivores and epibiota. For some traits, drivers that vary locally such as wave exposure, light availability or nutrient enrichment were also important. The strong genetic population structure in this macroalgae might play a role in the generation and maintenance of phenotypic patterns across geographic scales. In light of our results, the desalination process projected for the Baltic Sea could have detrimental impacts on F. vesiculosus in areas close to its tolerance limit, affecting ecosystem functions such as habitat formation, primary production, and food supply.Peer reviewe

    Cleaning up seas using blue growth initiatives : Mussel farming for eutrophication control in the Baltic Sea

    Get PDF
    Eutrophication is a serious threat to aquatic ecosystems globally with pronounced negative effects in the Baltic and other semi-enclosed estuaries and regional seas, where algal growth associated with excess nutrients causes widespread oxygen free “dead zones” and other threats to sustainability. Decades of policy initiatives to reduce external (land-based and atmospheric) nutrient loads have so far failed to control Baltic Sea eutrophication, which is compounded by significant internal release of legacy phosphorus (P) and biological nitrogen (N) fixation. Farming and harvesting of the native mussel species (Mytilus edulis/trossulus) is a promising internal measure for eutrophication control in the brackish Baltic Sea. Mussels from the more saline outer Baltic had higher N and P content than those from either the inner or central Baltic. Despite their relatively low nutrient content, harvesting farmed mussels from the central Baltic can be a cost-effective complement to land-based measures needed to reach eutrophication status targets and is an important contributor to circularity. Cost effectiveness of nutrient removal is more dependent on farm type than mussel nutrient content, suggesting the need for additional development of farm technology. Furthermore, current regulations are not sufficiently conducive to implementation of internal measures, and may constitute a bottleneck for reaching eutrophication status targets in the Baltic Sea and elsewhere. Highlights • Mussel farming is a viable internal measure to address Baltic Sea eutrophication. • Rates of nutrient removal depend on salinity at the regional scale and food availability at the local scale. • Cost effectiveness of nutrient removal by mussel farming depends also on farm type. • Total farm area needed for achieving HELCOM nutrient reduction targets is realistic

    Multi-ancestry GWAS reveals excitotoxicity associated with outcome after ischaemic stroke

    Get PDF
    During the first hours after stroke onset, neurological deficits can be highly unstable: some patients rapidly improve, while others deteriorate. This early neurological instability has a major impact on long-term outcome. Here, we aimed to determine the genetic architecture of early neurological instability measured by the difference between the National Institutes of Health Stroke Scale (NIHSS) within 6 h of stroke onset and NIHSS at 24 h. A total of 5876 individuals from seven countries (Spain, Finland, Poland, USA, Costa Rica, Mexico and Korea) were studied using a multi-ancestry meta-analyses. We found that 8.7% of NIHSS at 24 h of variance was explained by common genetic variations, and also that early neurological instability has a different genetic architecture from that of stroke risk. Eight loci (1p21.1, 1q42.2, 2p25.1, 2q31.2, 2q33.3, 5q33.2, 7p21.2 and 13q31.1) were genome-wide significant and explained 1.8% of the variability suggesting that additional variants influence early change in neurological deficits. We used functional genomics and bioinformatic annotation to identify the genes driving the association from each locus. Expression quantitative trait loci mapping and summary data-based Mendelian randomization indicate that ADAM23 (log Bayes factor = 5.41) was driving the association for 2q33.3. Gene-based analyses suggested that GRIA1 (log Bayes factor = 5.19), which is predominantly expressed in the brain, is the gene driving the association for the 5q33.2 locus. These analyses also nominated GNPAT (log Bayes factor = 7.64) ABCB5 (log Bayes factor = 5.97) for the 1p21.1 and 7p21.1 loci. Human brain single-nuclei RNA-sequencing indicates that the gene expression of ADAM23 and GRIA1 is enriched in neurons. ADAM23, a presynaptic protein and GRIA1, a protein subunit of the AMPA receptor, are part of a synaptic protein complex that modulates neuronal excitability. These data provide the first genetic evidence in humans that excitotoxicity may contribute to early neurological instability after acute ischaemic stroke. Ibanez et al. perform a multi-ancestry meta-analysis to investigate the genetic architecture of early stroke outcomes. Two of the eight genome-wide significant loci identified-ADAM23 and GRIA1-are involved in synaptic excitability, suggesting that excitotoxicity contributes to neurological instability after ischaemic stroke.Peer reviewe

    Erratum to: The study of cardiovascular risk in adolescents – ERICA: rationale, design and sample characteristics of a national survey examining cardiovascular risk factor profile in Brazilian adolescents

    Get PDF
    1585

    Benefits for Dominant Red Deer Hinds under a Competitive Feeding System: Food Access Behavior, Diet and Nutrient Selection

    Get PDF
    Social dominance is widely known to facilitate access to food resources in many animal species such as deer. However, research has paid little attention to dominance in ad libitum access to food because it was thought not to result in any benefit for dominant individuals. In this study we assessed if, even under ad libitum conditions, social rank may allow dominant hinds to consume the preferred components of food. Forty-four red deer hinds (Cervus elaphus) were allowed to consume ad libitum meal consisting of pellets of sunflower, lucerne and orange, and seeds of cereals, corn, cotton, and carob tree. The meal was placed only in one feeder, which reduced accessibility to a few individuals simultaneously. During seven days, feeding behavior (order of access, time to first feeding bout, total time spent feeding, and time per feeding bout) were assessed during the first hour. The relative abundance of each meal component was assessed at times 0, 1 and 5 h, as well as its nutritional composition. Social rank was positively related to the amount of time spent feeding during the 1st h (P = 0.048). Selection indices were positively correlated with energy (P = 0.018 during the 1st h and P = 0.047 from 1st to 5th) and fat (only during the 1st h; P = 0.036), but also negatively with certain minerals. Thus, dominant hinds could select high energy meal components for longer time under an ad libitum but restricted food access setting. Selection indices showed a higher selectivity when food availability was higher (1st hour respect to 1st to 5th). Finally, high and low ranking hinds had longer time per feeding bout than mid ones (P = 0.011), suggesting complex behavioral feeding tactics of low ranking social ungulates

    The TESS Grand Unified Hot Jupiter Survey. II. Twenty New Giant Planets

    Get PDF
    NASA's Transiting Exoplanet Survey Satellite (TESS) mission promises to improve our understanding of hot Jupiters by providing an all-sky, magnitude-limited sample of transiting hot Jupiters suitable for population studies. Assembling such a sample requires confirming hundreds of planet candidates with additional follow-up observations. Here, we present twenty hot Jupiters that were detected using TESS data and confirmed to be planets through photometric, spectroscopic, and imaging observations coordinated by the TESS Follow-up Observing Program (TFOP). These twenty planets have orbital periods shorter than 7 days and orbit relatively bright FGK stars (10.9<G<13.010.9 < G < 13.0). Most of the planets are comparable in mass to Jupiter, although there are four planets with masses less than that of Saturn. TOI-3976 b, the longest period planet in our sample (P=6.6P = 6.6 days), may be on a moderately eccentric orbit (e=0.18±0.06e = 0.18\pm0.06), while observations of the other targets are consistent with them being on circular orbits. We measured the projected stellar obliquity of TOI-1937A b, a hot Jupiter on a 22.4 hour orbit with the Rossiter-McLaughlin effect, finding the planet's orbit to be well-aligned with the stellar spin axis (λ=4.0±3.5|\lambda| = 4.0\pm3.5^\circ). We also investigated the possibility that TOI-1937 is a member of the NGC 2516 open cluster, but ultimately found the evidence for cluster membership to be ambiguous. These objects are part of a larger effort to build a complete sample of hot Jupiters to be used for future demographic and detailed characterization work.Comment: 67 pages, 11 tables, 13 figures, 2 figure sets. Resubmitted to ApJS after revision
    corecore