99 research outputs found

    Contesti in volo

    Get PDF
    Traditional design tools and procedures are not always appropriate to tackle the continuous movement of buildings and contexts. Starting from such apt consideration by Latour and Yaneva, this essay reflects on the issues that the introduction of movement and of time as strategic components of a design project involves, particularly within an Italian context. The move away from the binding duality of text and context requires an overcoming of the separation between objects and subjects that is substantial to a traditional determinist and authorial approach to the project: this is only possible through the proposition of a different dialogical and argumentative process and, consequently, a fundamental change in the role of the designer. This perspective finds a few premises within Italian discourse in the course of the 20th Century as regards three fundamental points: the city and its transformations; the necessary relationship between theory and project; the central question of form. In the conclusive remarks of the paper I propose an interpretation of form not as final solution but, as tentative form, as indispensable empowerment tool for the various actors involved

    Supersymmetric Electroweak Renormalization of the Z-Width in the MSSM (I)

    Full text link
    Within the framework of the MSSM, we compute the complete set of electroweak one-loop supersymmetric quantum effects on the width ΓZ\Gamma_Z of the ZZ-boson in the on-shell renormalization scheme. Numerical analyses of the corrections to the various partial widths into leptons and quarks are presented. On general grounds, the average size of the electroweak SUSY corrections to ΓZ\Gamma_Z may well saturate the level of the present theoretical uncertainties, even if considering the full supersymmetric spectrum lying in the neighbourhood of the unaccessible LEP 200 range. Remarkably enough, for the present values of the top quark mass, the electroweak SUSY effects could be, globally, very close or even bigger than the electroweak SM corrections, but opposite in sign. Therefore, in the absence of theoretical errors, there are large regions of parameter space where one could find that, effectively, the electroweak SM corrections are ``missing'', or even having the ``wrong'' sign. This should be helpful in discriminating between the SM and the MSSM. However, an accurate prediction of the electroweak quantum effects on ΓZ\Gamma_Z will only be possible, if Δr\Delta r and αs\alpha_s are pinned down in the future with enough precision.Comment: 17 p. in LaTeX. Preprint UAB-FT-343. Error in figure caption #3 corrected. Results unchange

    Cosmic Flows on 100 Mpc/h Scales: Standardized Minimum Variance Bulk Flow, Shear and Octupole Moments

    Get PDF
    The low order moments, such as the bulk flow and shear, of the large scale peculiar velocity field are sensitive probes of the matter density fluctuations on very large scales. In practice, however, peculiar velocity surveys are usually sparse and noisy, which can lead to the aliasing of small scale power into what is meant to be a probe of the largest scales. Previously, we developed an optimal ``minimum variance'' (MV) weighting scheme, designed to overcome this problem by minimizing the difference between the measured bulk flow (BF) and that which would be measured by an ideal survey. Here we extend this MV analysis to include the shear and octupole moments, which are designed to have almost no correlations between them so that they are virtually orthogonal. We apply this MV analysis to a compilation of all major peculiar velocity surveys, consisting of 4536 measurements. Our estimate of the BF on scales of ~ 100 Mpc/h has a magnitude of |v|= 416 +/- 78 km/s towards Galactic l = 282 degree +/- 11 degree and b = 6 degree +/- 6 degree. This result is in disagreement with LCDM with WMAP5 cosmological parameters at a high confidence level, but is in good agreement with our previous MV result without an orthogonality constraint, showing that the shear and octupole moments did not contaminate the previous BF measurement. The shear and octupole moments are consistent with WMAP5 power spectrum, although the measurement noise is larger for these moments than for the BF. The relatively low shear moments suggest that the sources responsible for the BF are at large distances.Comment: 13 Pages, 7 figures, 4 tables. Some changes to reflect the published versio

    Statistical properties of exoplanets II. Metallicity, orbital parameters, and space velocities

    Get PDF
    In this article we present a detailed spectroscopic analysis of more than 50 extra-solar planet host stars. Stellar atmospheric parameters and metallicities are derived using high resolution and high S/N spectra. The spectroscopy results, added to the previous studies, imply that we have access to a large and uniform sample of metallicities for about 80 planet hosts stars. We make use of this sample to confirm the metal-rich nature of stars with planets, and to show that the planetary frequency is rising as a function of the [Fe/H]. Furthermore, the source of this high metallicity is shown to have most probably an ``primordial'' source, confirming previous results. The comparison of the orbital properties (period and eccentricity) and minimum masses of the planets with the stellar properties also reveal some emerging but still not significant trends. These are discussed and some explanations are proposed. Finally, we show that the planet host stars included in the CORALIE survey have similar kinematical properties as the whole CORALIE volume-limited planet search sample. Planet hosts simply seem to occupy the metal-rich envelope of this latter population.Comment: 15 pages, 10 (eps) figures, Astronomy & Astrophysics, in pres

    The GAPS Programme with HARPS-N@TNG VI: The Curious Case of TrES-4b

    Get PDF
    We revisit the TrES-4 system parameters based on high-precision HARPS-N radial-velocity measurements and new photometric light curves. A combined spectroscopic and photometric analysis allows us to determine a spectroscopic orbit with an amplitude K=51±3K=51\pm3 m s1^{-1}. The derived mass of TrES-4b is found to be Mp=0.49±0.04MJupM_{\rm p} = 0.49\pm0.04 \rm M_{Jup}, significantly lower than previously reported. Combined with the large radius (Rp=1.840.09+0.08RJupR_{\rm p} = 1.84_{-0.09}^{+0.08} \rm R_{Jup}) inferred from our analysis, TrES-4b becomes the second-lowest density transiting hot Jupiter known. We discuss several scenarios to explain the puzzling discrepancy in the mass of TrES-4b in the context of the exotic class of highly inflated transiting giant planets.Comment: 5 pages, 4 figures, Letter accepted for publication in Astronomy and Astrophysic

    Observation of the full 12-hour-long transit of the exoplanet HD80606b. Warm-Spitzer photometry and SOPHIE spectroscopy

    Get PDF
    We present new observations of a transit of the 111-day-period exoplanet HD80606b. Using the Spitzer Space Telescope and its IRAC camera on the post-cryogenic mission, we performed a 19-hour-long photometric observation of HD80606 that covers the full transit of 13-14 January 2010. We complement this photometric data by new spectroscopic observations that we simultaneously performed with SOPHIE at Haute-Provence Observatory. This provides radial velocity measurements of the first half of the transit that was previously uncovered with spectroscopy. This new data set allows the parameters of this singular planetary system to be significantly refined. We obtained a planet-to-star radius ratio R_p/R_* = 0.1001 +/- 0.0006 that is slightly lower than the one measured from previous ground observations. We detected a feature in the Spitzer light curve that could be due to a stellar spot. We also found a transit timing about 20 minutes earlier than the ephemeris prediction; this could be caused by actual TTVs due to an additional body in the system or by underestimated systematic uncertainties. The sky-projected angle between the spin-axis of HD80606 and the normal to the planetary orbital plane is found to be lambda = 42 +/- 8 degrees thanks to the fit of the Rossiter-McLaughlin anomaly. This allows scenarios with aligned spin-orbit to be definitively rejected. Over the twenty planetary systems with measured spin-orbit angles, a few of them are misaligned; this is probably the signature of two different evolution scenarios for misaligned and aligned systems, depending if they experienced or not gravitational interaction with a third body. As in the case of HD80606b, most of the planetary systems including a massive planet are tilted; this could be the signature of a separate evolution scenario for massive planets in comparison with Jupiter-mass planets.Comment: 14 pages, 9 figures, 2 tables, accepted for publication in A&

    The GAPS programme with HARPS-N@TNG IV: A planetary system around XO-2S

    Get PDF
    We performed an intensive radial velocity monitoring of XO-2S, the wide companion of the transiting planet-host XO-2N, using HARPS-N at TNG in the framework of the GAPS programme. The radial velocity measurements indicate the presence of a new planetary system formed by a planet that is slightly more massive than Jupiter at 0.48 au and a Saturn-mass planet at 0.13 au. Both planetary orbits are moderately eccentric and were found to be dynamically stable. There are also indications of a long-term trend in the radial velocities. This is the first confirmed case of a wide binary whose components both host planets, one of which is transiting, which makes the XO-2 system a unique laboratory for understanding the diversity of planetary systems.Comment: 7 pages, 3 figures, accepted on A&A Lette

    The Values of mtm_t and αsˉ\bar{\alpha_s} Derived from the Non-Observation of Electroweak Radiative Corrections at LEP: Global Fit

    Full text link
    A set of equations representing the W/ZW/Z mass ratio and various observables of ZZ decays in terms of αˉα(mZ)\bar\alpha \equiv\alpha (m_Z), GμG_{\mu}, mZm_Z, mtm_t, mHm_H, αˉsαs(mZ)\bar\alpha_{s} \equiv\alpha_{s} (m_Z), mbm_b and mτm_\tau (all other fermion masses being neglected) are compared with the latest data of the four LEP detectors, which at the level of one standard deviation coincide with their Born values. Our global fit gives: mt=1611622+15+16αˉs=0.119±0.006±0.002m_t = 161^{+ 15 +16}_{-16 -22} \bar\alpha_{s} = 0.119 \pm 0.006 \pm 0.002, where the central values correspond to mH=300m_H = 300 GeV, the first errors are statistical and the second ones represent shifts of the central values corresponding to mH=1000m_H = 1000 GeV(++) and 60 GeV(-). The predicted mass of the top is smaller than in the recent fits by 4 GeV. The {\it predicted} values of mW/mZm_W/m_Z and the LEP observables, based on the fitted values of mtm_t and αˉs\bar{\alpha}_s, show a weak dependence on mHm_H and differ by several {\it predicted} standard deviations from the corresponding Born values. The uncertainties of the predicted values and their deviations from the corresponding Born values determine the experimental accuracy required to observe electroweak radiative corrections.Comment: LaTex, 15 pages (including 3 figures as EPS files at the end

    Transiting exoplanets from the CoRoT space mission IX. CoRoT-6b: a transiting `hot Jupiter' planet in an 8.9d orbit around a low-metallicity star

    Full text link
    The CoRoT satellite exoplanetary team announces its sixth transiting planet in this paper. We describe and discuss the satellite observations as well as the complementary ground-based observations - photometric and spectroscopic - carried out to assess the planetary nature of the object and determine its specific physical parameters. The discovery reported here is a `hot Jupiter' planet in an 8.9d orbit, 18 stellar radii, or 0.08 AU, away from its primary star, which is a solar-type star (F9V) with an estimated age of 3.0 Gyr. The planet mass is close to 3 times that of Jupiter. The star has a metallicity of 0.2 dex lower than the Sun, and a relatively high 7^7Li abundance. While thelightcurveindicatesamuchhigherlevelof activity than, e.g., the Sun, there is no sign of activity spectroscopically in e.g., the [Ca ] H&K lines

    On the Eccentricity Distribution of Short-Period Single-Planet Systems

    Full text link
    We apply standard Markov chain Monte Carlo (MCMC) analysis techniques for 50 short- period, single-planet systems discovered with radial velocity technique. We develop a new method for accessing the significance of a non-zero orbital eccentricity, namely {\Gamma} analysis, which combines frequentist bootstrap approach with Bayesian analysis of each simulated data set. We find the eccentricity estimations from {\Gamma} analysis are generally consistent with results from both standard MCMC analysis and previous references. The {\Gamma} method is particular useful for assessing the significance of small eccentricities. Our results suggest that the current sample size is insufficient to draw robust conclusions about the roles of tidal interaction and perturbations in shaping the eccentricity distribution of short-period single-planet systems. We use a Bayesian population analysis to show that a mixture of analytical distributions is a good approximation of the underlying eccentricity distribution. For short-period planets, we find the most probable values of parameters in the analytical functions given the observed eccentricities. These analytical functions can be used in theoretical investigations or as priors for the eccentricity distribution when analyzing short-period planets. As the measurement precision improves and sample size increases, the method can be applied to more complex parametrizations for the underlying distribution of eccentricity for extrasolar planetary systems.Comment: 13 pages, 11 figures, 4 tables, accepted by MNRA
    corecore