15 research outputs found

    UV-B Exposure of Black Carrot (<i>Daucus carota</i> ssp. <i>sativus</i> var. <i>atrorubens</i>) Plants Promotes Growth, Accumulation of Anthocyanin, and Phenolic Compounds

    Get PDF
    © The Author(s).Black carrot (Daucus carota L. ssp. sativus var. atroburens) is a root vegetable with anthocyanins as major phenolic compounds. The accumulation of phenolic compounds is a common response to UV-B exposure, acting as protective compounds and as antioxidants. In the present study, black carrot plants grown under a 12-h photoperiod were supplemented with UV-B radiation (21.6 kj m−2 day−1) during the last two weeks of growth. Carrot taproots and tops were harvested separately, and the effect of the UV-B irradiance was evaluated in terms of size (biomass and length), total monomeric anthocyanin content (TMC), total phenolic content (TPC), and phytohormones levels. The results showed that UV-B irradiance promoted plant growth, as shown by the elevated root (30%) and top (24%) biomass, the increased TMC and TPC in the root (over 10%), and the increased TPC of the top (9%). A hormone analysis revealed that, in response to UV-B irradiance, the levels of abscisic acid (ABA), jasmonic acid (JA), and salicylic acid (SA) decreased in tops while the level of the cytokinins cis-zeatin (cZ) and trans-zeatinriboside (tZR) increased in roots, which correlated with an amplified growth and the accumulation of anthocyanins and phenolic compounds. Beyond the practical implications that this work may have, it contributes to the understanding of UV-B responses in black carrotThis research was funded by the Danish Ministry of Science, Innovation, and Education grant number 6111-00240B and “Fundación Séneca” of the Agency of Science and Technology of the Region of Murcia grant number 20405/SF/17.Peer reviewe

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Crop Genetic Resources: An Overview

    No full text
    The impacts of climate change on crop production are already a reality worldwide [...

    Crop Genetic Resources: An Overview

    No full text
    The impacts of climate change on crop production are already a reality worldwide [...

    Gibberellic Acid-Induced Aleurone Layers Responding to Heat Shock or Tunicamycin Provide Insight into the N-Glycoproteome, Protein Secretion, and Endoplasmic Reticulum Stress

    No full text
    The growing relevance of plants for the production of recombinant proteins makes understanding the secretory machinery, including the identification of glycosylation sites in secreted proteins, an important goal of plant proteomics. Barley (Hordeum vulgare) aleurone layers maintained in vitro respond to gibberellic acid by secreting an array of proteins and provide a unique system for the analysis of plant protein secretion. Perturbation of protein secretion in gibberellic acid-induced aleurone layers by two independent mechanisms, heat shock and tunicamycin treatment, demonstrated overlapping effects on both the intracellular and secreted proteomes. Proteins in a total of 22 and 178 two-dimensional gel spots changing in intensity in extracellular and intracellular fractions, respectively, were identified by mass spectrometry. Among these are proteins with key roles in protein processing and secretion, such as calreticulin, protein disulfide isomerase, proteasome subunits, and isopentenyl diphosphate isomerase. Sixteen heat shock proteins in 29 spots showed diverse responses to the treatments, with only a minority increasing in response to heat shock. The majority, all of which were small heat shock proteins, decreased in heat-shocked aleurone layers. Additionally, glycopeptide enrichment and N-glycosylation analysis identified 73 glycosylation sites in 65 aleurone layer proteins, with 53 of the glycoproteins found in extracellular fractions and 36 found in intracellular fractions. This represents major progress in characterization of the barley N-glycoproteome, since only four of these sites were previously described. Overall, these findings considerably advance knowledge of the plant protein secretion system in general and emphasize the versatility of the aleurone layer as a model system for studying plant protein secretion

    Preharvest application of ethephon and postharvest UV-B radiation improve quality traits of beetroot (Beta vulgaris L. ssp. vulgaris) as source of colourant

    Get PDF
    Abstract Background Betanins have become excellent replacers for artificial red-purple food colourants. Red beet (Beta vulgaris L. spp. vulgaris) known as beetroot, is a rich source of betalains, which major forms are betanin (red to purple) and vulgaxanthin (yellow). Betalains and phenolic compounds are secondary metabolites, accumulation of which is often triggered by elicitors during plant stress responses. In the present study, pre-harvest applications of ethephon (an ethylene-releasing compound) and postharvest UV-B radiation were tested as elicitors of betalains and phenolic compounds in two beetroot cultivars. Their effects on quality parameters were investigated, and the expression of biosynthetic betalain genes in response to ethephon was determined. Results Ethephon was applied as foliar spray during the growth of beetroot, resulting in increased betanin (22.5%) and decreased soluble solids contents (9.4%), without detrimental effects on beetroot yield. The most rapid accumulation rate for betanin and soluble solids was observed between 3 and 6 weeks after sowing in both untreated and ethephon-treated beetroots. Overall, the expression of the betalain biosynthetic genes (CYP76AD1, CYP76AD5, CYP76AD6 and DODA1), determining the formation of both betanin and vulgaxanthin, increased in response to ethephon treatment, as did the expression of the betalain pathway activator BvMYB1. In the postharvest environment, the use of short-term UV-B radiation (1.23 kJ m− 2) followed by storages for 3 and 7 days at 15 °C resulted in increased betanin to vulgaxanthin ratio (51%) and phenolic content (15%). Conclusions The results of this study provide novel strategies to improve key profitability traits in betalain production. High betanin concentration and high betanin to vulgaxanthin ratio increase the commercial value of the colourant product. In addition, lowering soluble solids levels facilitates higher concentration of beetroot colour during processing. Moreover, we show that enhanced betanin content in ethephon-treated beetroots is linked to increased expression of betalain biosynthetic genes

    The long-term resistance mechanisms, critical irrigation threshold and relief capacity shown by <i>Eugenia myrtifolia</i> plants in response to saline reclaimed water

    Get PDF
    Salts present in irrigation water are serious problems for commercial horticulture, particularly in semi-arid regions. Reclaimed water (RW) typically contains, among others elements, high levels of salts, boron and heavy metal. Phytotoxic ion accumulation in the substrate has been linked to different electric conductivities of the treatments. Based on these premises, we studied the long-term effect of three reclaimed water treatments with different saline concentrations on Eugenia myrtifolia plants. We also looked at the ability of these plants to recover when no drainage was applied. The RW with the highest electric conductivity (RW3, EC = 6.96 dS m) provoked a number of responses to salinity in these plants, including: 1) accumulation and extrusion of phytotoxic ions in roots; 2) a decrease in the shoot/root ratio, leaf area, number of leaves; 3) a decrease in root hydraulic conductivity, leaf water potential, the relative water content of leaves, leaf stomatal conductance, the leaf photosynthetic rate, water-use efficiency and accumulated evapotranspiration in order to limit water loss; and 4) changes in the antioxidant defence mechanisms. These different responses induced oxidative stress, which can explain the damage caused in the membranes, leading to the death of RW3 plants during the relief period. The behaviour observed in RW2 plants was slightly better compared with RW3 plants, although at the end of the experiment about 55% of the RW2 plants also died, however RW containing low salinity level (RW1, EC = 2.97 dS m) can be effective for plant irrigation.This work was supported by the Spanish Ministry of Economy and Competitiveness co-financed by FEDER funds (Project CICYT AGL 2011–30022-C02-01-02) and by The Fundación Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia (11883/PI/09 and 15356/PI/10).Peer Reviewe
    corecore