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Abstract: Black carrot (Daucus carota L. ssp. sativus var. atroburens) is a root vegetable with
anthocyanins as major phenolic compounds. The accumulation of phenolic compounds is a common
response to UV-B exposure, acting as protective compounds and as antioxidants. In the present
study, black carrot plants grown under a 12-h photoperiod were supplemented with UV-B radiation
(21.6 kj m−2 day−1) during the last two weeks of growth. Carrot taproots and tops were harvested
separately, and the effect of the UV-B irradiance was evaluated in terms of size (biomass and length),
total monomeric anthocyanin content (TMC), total phenolic content (TPC), and phytohormones levels.
The results showed that UV-B irradiance promoted plant growth, as shown by the elevated root
(30%) and top (24%) biomass, the increased TMC and TPC in the root (over 10%), and the increased
TPC of the top (9%). A hormone analysis revealed that, in response to UV-B irradiance, the levels of
abscisic acid (ABA), jasmonic acid (JA), and salicylic acid (SA) decreased in tops while the level of the
cytokinins cis-zeatin (cZ) and trans-zeatinriboside (tZR) increased in roots, which correlated with
an amplified growth and the accumulation of anthocyanins and phenolic compounds. Beyond the
practical implications that this work may have, it contributes to the understanding of UV-B responses
in black carrot.

Keywords: anthocyanins; black carrot; phenolic compounds; phytohormones; UV-B irradiance

1. Introduction

Domesticated carrot is a root vegetable of which the colour ranges from orange (Daucus carota
L. ssp. sativus var. sativus) to purple or black cultivars (Daucus carota L. ssp. sativus var. atroburens),
with anthocyanins as major secondary metabolites [1]. The main interest in black carrot anthocyanins is
related to their high ratio of mono-acylated structures with three sugar moieties, which provide a high
physicochemical stability to the colour extracts and make black carrot suitable for developing natural
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colourants (labelled E163 in Europe) [2]. In addition to anthocyanins, black carrot taproot is a rich
source of non-anthocyanin phenolic compounds, mainly consisting of hydroxycinnamic acids and
derivatives [3]. The content of phenolic compounds is highly correlated with the strong antioxidant
activity of the taproot extract, which in turn is associated with the potential health benefits of black
carrot in preventing cardiovascular and neuronal diseases, among other diseases [3,4]. Although at
much lower concentrations than in the taproot, phenolic compounds are also present in carrot leaves [5].

Phenolic compounds act as non-enzymatic antioxidants, scavenging reactive oxygen species (ROS)
and participating in the response to stress [6]. In this respect, the metabolism and accumulation of
phenolic compounds increases under stress conditions such as wounding, pathogen attack, and UV
radiation, among others [7,8]. Photoprotective roles of foliar phenolic compounds against UV-B
radiation have received much attention in recent years. Because of its high energy, this short-wave
band of the terrestrial solar spectrum causes damages to RNA, DNA, proteins, and lipids [9].
Consequently, plants accumulate UV-B-absorbing phenolic compounds in the epidermal layers
of leaves and stems. Of all classes of phenolic compounds, flavonoids, particularly anthocyanins,
are regarded as the main contributors to the UV-B screening capacity of the plant [10].

Although for the past few decades UV-B radiation was mainly regarded as a stressor [11,12], it now
appears to have important regulatory roles in plants [13–15]. In this sense, while high UV-B doses
are more often associated with detrimental effects, moderate and sub-lethal levels of UV-B have been
associated with the stimulation of plant growth via specific signalling, leading to an acclimation state
without evident signs of stress [14,16]. Until now, the effect of UV-B light has not been investigated
neither in carrot in vivo nor in a black carrot variety.

As hormones are widespread in the regulation of plant metabolism and morphogenesis, they are
also implicated in UV-B stress response and signalling, participating in systemic signalling networks
that ultimately affects plant growth and development [14,17]. Likewise, hormones interact in controlling
anthocyanin biosynthesis [18,19]. However, the study of phytohormone profiles in carrot has been
limited to the flowering process in leaf tissue [20], and the molecular mechanisms underlying differential
anthocyanin accumulation in the root in response to above ground stimuli remain unknown. In the
present work, we studied for the first time the effects of a moderate dose of supplemental UV-B light
on black carrot performance. The levels of phytohormones (abscisic acid, cytokinins, indole-3-acetic,
jasmonic acid, jasmonic acid-isoleucine, and salicylic acid), total anthocyanins, and phenolic compounds
were determined, establishing a comparison between the plant top and taproot. Taken together,
this study increases the knowledge on black carrot phytochemical composition and physiology and
contributes to the understanding of the physiological responses to UV-B light.

2. Materials and Methods

2.1. Plant Material and Cultivation

Seeds of black carrots (Daucus carota L. ssp. sativus var. atrorubens) of “Deep Purple” F1 (Bejo Seeds
Inc., Oceano, CA, USA) were sown in 30-cm long cylindrical pots (18 cm in diameter) with 7.5 L of an
equal mixture of garden soil and perlite (particle size 1–5 mm), which provided an adequate balance of
air and moisture content around the taproot [21]. Ten sowing spots per pot were distributed, and three
seeds were introduced in each one at one-cm depths. Pots (12 in total) were placed in a climate
chamber under a 12-h photoperiod (350 µmol m−2s−1 visible light) in a 20 ◦C day/18 ◦C night cycle.
From ten days after sowing, 1 L 1/2 Hoagland solution was applied every 3 days until the end of the
experiment. Fourteen days after sowing, two seedlings per spot were removed, leaving one vigorous
plant per place.

2.2. UV-B Light Treatment

Twelve weeks after sowing, the aboveground parts of the carrots plants were treated with
supplemental UV-B light (6 W m−2 s−1 radiation fluence rate) during 1 h per day (21.6 kj m−2 day−1),
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coinciding with the fifth hour of white light of the 12-h photoperiod provided by low irradiance UV-B
lamps (Philips Broadband TL40W/12 RS, Eindhoven, The Netherlands) placed at a distance of ca. 1.2 m
from the top of the plants. Radiation was measured using a RM-12 Ultraviolet Light Meter equipped
with a UVB sensor (Opsytec Dr. Gröbel GmbH, Ettlingen, Germany).

2.3. Harvest, Sample Collection, and Processing

Fourteen days after the initiation of the UV-B light treatment (16 weeks after sowing), plants were
harvested, washed, and carefully dried. The length and fresh weight (FW) of the top and taproot of
each plant were registered. In the case of the top length, it corresponded to the length of the longest leaf.
For further analyses, two types of samples were generated: (1) shoot samples, composed of the pool of
leaves and stems of the 10 plants from a pot, and (2) root samples, composed of the corresponding
10 taproots. Subsequently, each combined sample (biological replicate) was ground in liquid nitrogen
prior to storage of the resulting powder at −80 ◦C.

2.4. Determination of Total Monomeric Anthocyanin Content (TMC) and Total Phenolic Content (TPC)

Five grams of the powder generated above was homogenised in a 3% sulfuric acid solution
(1/1, w/w) using a Waring® two-speed commercial blender (VWR-Bie & Berntsen, Herlev, Denmark).
The produced homogenate was then vigorously mixed either with (a) water (1/2, w/w) for the subsequent
analysis of TMC or (b) 70% ethanol (1/2, w/w) for the later analysis of TPC. After 1 h of incubation
at 25 ◦C, the sample was centrifuged for 20 min at 4500 rpm and the resulting supernatant was
collected [1].

TMC determination was based on the pH differential method with minor modifications [1];
in brief, the supernatant extracted in water was diluted in a 0.2 M KCl–HCl (pH 1) solution (1/1, v/v),
and the absorption was measured between 350 and 700 nm using a UV-visible spectrophotometer
(Thermo Scientific Evolution™ 220, Waltham, MA, USA). The TMC was calculated as cyanidin
3-glucoside equivalents.

TPC was determined by the Folin–Ciocalteau method [22]. In brief, the supernatant extracted in
70% ethanol was mixed with the Folin–Ciocalteau reagent (1/5, v/v), followed by the addition of 20%
(w/v) sodium carbonate (0.6/1, v/v). After incubation for 2 h in the dark, the absorbance was determined
at 760 nm using a UV-visible spectrophotometer (Thermo Scientific Evolution™ 220). The TPC was
then calculated as mg of gallic acid equivalent (GAE) per g of FW.

2.5. Phytohormones Determination

The method setup based on Reference [23] with minor modifications allowed the simultaneous
determination of the following hormones and derivatives: abscisic acid (ABA); indole-3-acetic acid
(IAA); jasmonic acid (JA); jasmonic acid-isoluecine (JA-Ile); methyl jasmonate (MeJA); salicylic acid
(SA); and the cytokinins (CKs) cis-zeatin (cZ), dihydrozeatin (DHZ), dihydrozeatinriboside (DHZR),
and trans-zeatin (tZ). In brief, 200 mg ground leaves and 300 mg ground roots (FW) were homogenized
in 1.25 mL 80% methanol with the addition of 10 µL of internal standard mix (5 ppm in 80% methanol)
composed of the deuterium-labelled hormones (2H5)tZ and (2H6)ABA. The supernatants were
filtrated using 80% methanol-activated C18 columns (Phenomenex, Strata® C18-E, 200 mg/3 mL,
8B-S001-FBJ), and the elutes were collected on ice. The pellet was re-extracted in 1.25 mL 80% methanol.
The combined extracts were concentrated to dryness in a SpeedVac system, and the resulting residues
were sonicated in 1 mL 20% methanol and passed through 0.2-µm syringe filters (Chromafil PES-20/25).
Finally, the samples were analysed using an AdvanceTM-UHPLC/EVOQTMElite-TQ-MS system
(Bruker) with a Phenomenex C-18 reversed phase column (Kinetex 1.7 u XB-C18, 10 cm × 2.1 mm,
1.7 µm particle size) according to Reference [24], and the results were expressed as pmol g−1 FW.
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2.6. Statistical Analyses

The analyses were conducted with four to six biological replicates, each of them consisting of the
pool of samples from one pot (10 plants). The data were subjected to a statistical analysis using the
StatGraphics Centurion XV software (StatPoint Technologies, Warrenton, VA, USA). The treatments
were compared using a one-way analysis of variance (ANOVA) followed by a Least Significant
Differences post hoc test (p ≤ 0.05). The Pearson’s correlation coefficient was calculated to measure
the linear relationship between pairs of variables. A principal component analysis (PCA) followed
by a partial least squares discriminant analysis was conducted to assign the principal components
displaying eigenvalues greater than or equal to 1.0, which led to the identification of two principal
components explaining 84% of the variation within the data set.

3. Results

In the present work, 12-week-old black carrot plants of “Deep Purple” F1 grown under visible light
were subjected to a moderate dose of UV-B radiation concurring with a 12-h photoperiod. After 2 weeks,
the plants were harvested, and the effect of the treatment was evaluated on tops and taproots in terms
of size (weight and length) and phytochemical composition (total phenolic and anthocyanin contents
and phytohormones levels).

Overall, both untreated and UV-B-treated plants displayed undistinguishable taproot appearance
and a transversal colour (Figure 1a). Likewise, the plant length was statistically equal in both treatments;
control plants displayed mean values of 55.0 and 14.5 cm and UV-B plants displayed values of 56.3 and
15.3 cm for the top and taproot lengths, respectively (Figure 1b). By contrast, fresh weights (FWs) of the
taproot (22.5 g) and the top (43.2 g) of treated plants were significantly higher than those of untreated
plants (17.2 and 34.7 g for taproot and top, respectively) by 30 and 24%, respectively (Figure 1c).
In addition, UV-B light treatment had no impact on the ratio between the FW of tops and roots (1.89) or
on the dry weight of tops and roots.

Figure 1. Growth of untreated and UV-B-treated plants of black carrot. (a) Taproot appearance and
transversal sections. (b) Top and taproot length. (c) Top and taproot fresh weight. Different letters
indicate statistical significances according to the least significant differences test (p ≤ 0.05).

Subsequently, the effects of UV-B irradiance on TMC and TPC were analysed (Figure 2).
UV-B treatment increased TMC in tops by 10%, exhibiting mean values of 208 and 228 µg g−1

FW in untreated and UV-B-treated plants, respectively, although showing no significant differences.
As expected, TMC in taproots was remarkably higher than in tops, with values of 1494 and 1694 µg g−1

FW in untreated and UV-B-treated plants, respectively, the latter being significantly higher (Figure 2a).
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Similarly, TPC was higher in taproots (2309 and 2612 µg g−1 FW for untreated and treated plants,
respectively) than in tops (337.7 and 370.3 µg g−1 FW for untreated and treated plants, respectively)
(Figure 2b). TPC of treated plants was significantly higher than that of control plants, increasing by
9 and 13% in tops and taproots, respectively (Figure 2b).

Figure 2. Total monomeric anthocyanins content (TMC) (a) and total phenolics content (TPC) (b) of
untreated and UV-B-treated tops and taproots of black carrot. Different letters indicate statistical
significances according to the least significant differences test (p ≤ 0.05).

The phytohormone analysis allowed the parallel quantification of eight different hormones
(ABA, cZ, IAA, JA, JA-Ile, SA, tZR, and tZROG) from one single sample (Figure 3). Two additional
ones, MeJA and tZ, were not consistently measured in the two experiment repetitions and, therefore,
considered as not detected under our experimental conditions. Regardless of treatment, the levels of
certain hormones (IAA, JA, JA-Ile, and tZROG) remained higher in tops than in taproots, whereas others
(ABA and tZR) displayed the opposite variation. Finally, the levels of SA, the most abundant hormone,
were comparable in both organs, whereas cZ was not detected in tops (Figure 3).
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Figure 3. Phytohormones determination on top and root samples of black carrot. ABA: abscisic acid
(a); tZR: trans-zeatinriboside (b); JA: jasmonic acid (c); IAA: indole-3-acetic acid (d); SA: salicylic acid
(e); JA-Ile: jasmonic acid-isoleucine (f); tZROG: trans-zeatinriboside-O-glucoside (g); and cZ: cis-zeatin
(h). Different letters indicate statistical significances according to the least significant differences test
(p ≤ 0.05).

Regarding the comparison between treatments on carrot tops, hormone levels for ABA, IAA,
JA, SA, and tZR decreased significantly upon UV-B treatment. In this respect, the highest variation
corresponded to ABA and tZR, where the mean values dropped over 50% (from 0.47 to 0.23 and 0.041 to
0.020 pmol g−1 FW, respectively) in response to UV-B light treatment, followed by JA, of which the
levels decreased by 46% upon UV-B light treatment, passing from 0.60 to 0.32 pmol g−1 FW (Figure 3a–c).
Likewise, the mean value of IAA reduced from 2020 to 1351 pmol g−1 FW, which represents a 33.1%
decrease (Figure 3d), and the levels of SA passed from 1574 to 1241 pmol g−1 FW (21% decrease)
(Figure 3e). On the other hand, the levels of JA-Ile and tZROG remained statistically invariable between
treatments on carrot tops (Figure 3f,g).
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In roots, a distinct response was found; the cytokinins cZ and tZR increased in UV-B-treated roots
with respect to untreated roots, whereas the rest of hormones remained unchanged in both treated and
untreated roots. cZ, which was not detected in carrot tops, was found to increase by 50% upon UV-B light
treatment, displaying values of 0.030 pmol g−1 FW, whereas the levels on control taproots remained at
0.019 pmol g−1 FW (Figure 3h). The levels of tZR for roots of UV-B treated plants (0.041 pmol g−1 FW)
more than doubled those found on untreated roots (0.020 pmol g−1 FW) (Figure 3b).

In order to determine any association between variables, a correlation matrix was elaborated
(Table 1), which denoted noticeable variations among them. The correlation of greatest magnitude
was evenly displayed for TPC and length and for TMC and length (−0.98), followed by TPC and TMC
(0.97), whereas coefficients between weight and TPC and between weight and TMC were 0.88 and 0.89,
respectively; this indicates that, rather than length, weight is the main factor associated positively to the
levels of TPC and TMC. With respect to hormones, TMC and TPC showed very similar positive (ABA)
and negative (IAA, JA, JA-Ile, SA, cZ, tZROG, and tZR) correlations, which demonstrates that the higher
TMC and TPC is, the lower the levels of most of the hormones are, and indicates the close association
between TMC and TPC. Interestingly, length displayed similar correlation coefficients to TMC and
TPC with regard to hormones but with the opposite sign. ABA, JA, and tZROG were the most relevant
hormones for the establishment of correlations. Moreover, ABA displayed negative correlations to JA
and tZROG. On the other hand, SA and cZ were the variables displaying fewer correlations.

Table 1. Pearson’s correlation coefficients for the variables studied.

ABA IAA JA JA-Ile SA cZ t-ZROG t-ZR Weight Length TMC

IAA −0.77 ***
JA −0.84 *** 0.71 *

JA-Ile −0.66 ** 0.84 *** 0.83 ***
SA −0.34 0.24 0.20 0.37
cZ 0.72 * −0.21 0.04 −0.04 −0.75 *

t-ZROG −0.84 *** 0.81 *** 0.89 *** 0.77 *** 0.37 −0.33
t-ZR 0.32 −0.18 −0.51 −0.41 0.08 0.01 −0.31

Weight 0.86 *** −0.73 *** −0.87 *** −0.69 ** −0.27 0.26 −0.87 *** 0.31
Length −0.97 *** 0.81 *** 0.88 *** 0.68 ** 0.24 −0.03 0.83 *** −0.44 −0.85 ***
TMC 0.98 *** −0.78 *** −0.88 *** −0.68 ** −0.24 −0.00 −0.85 *** 0.38 0.89 *** −0.98 ***
TPC 0.98 *** −0.79 *** −0.88 *** −0.70 ** −0.28 0.39 −0.83 *** 0.51 0.88 *** −0.98 *** 0.97 ***

The symbols *, **, and *** denote statistical significances at p ≤ 0.05, p ≤ 0.01, and p ≤ 0.001, respectively. ABA:
abscisic acid; cZ: cis-zeatin; IAA: indole-3-acetic acid; JA: jasmonic acid; JA-Ile: jasmonic acid-isoleucine; SA: salicylic
acid; TMC: total monomeric anthocyanin content; TPC: total phenolic content; tZR: trans-zeatinriboside; and tZROG:
trans-zeatinriboside-O-glucoside.

Complementarily, PCA was utilised as a mathematical tool to determine associations between the
hormonal and physiological (growth, TPC, and TMC) variables (Figure 4). PCA resulted in a model with
two principal components (PCs) explaining 84% of the total variance (Figure 4). The first PC accounted
for 75%, whereas the second explained 9% of the variance. Two main groups of variables could be
easily distinguished from left to right in PC1, showing the loadings for TMC, TPC, weight, ABA,
and cZ clustered in one group and length and the hormones IAA, JA, JA-Ile, and tZROG grouped in the
opposite direction with a similar magnitude, which is related to the higher abundance of the levels of
the first and second groups in roots and tops, respectively (Figures 1–3). Concerning PC2, two variables,
SA and tZR, appeared as the dominant loadings while not showing a relevant contribution to PC1.
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Figure 4. A principal component analysis applied to growth, total phenolic content (TPC),
total monomeric anthocyanin content (TMC), and hormone (ABA: abscisic acid; cZ: cis-zeatin;
IAA: indole-3-acetic acid; JA: jasmonic acid; JA-Ile: jasmonic acid-isoleucine; SA: salicylic acid;
tZR: trans-zeatinriboside; and tZROG: trans-zeatinriboside-O-glucoside) variables. Two principal
components (PC1 and PC2) resulted in a model that explained 84% of the total variance. The arrows
denote eigen vectors characterised by the direction and the strength of the variable relative to PC1
and 2.

4. Discussion

Numerous publications refer to UV-B-derived physiological and phenotypic changes.
These reports are diverse and often show opposite effects, which likely reflect the heterogeneity
of experimental conditions and plant material. Moreover, the ecological relevance of the UV treatment
has to be taken into consideration in order to distinguish between UV-stress response and acclimation
effects [25,26]. In the present study, a positive effect of a moderate dose of UV-B irradiance on black
carrot performance was achieved. Such an effect was reflected in increased top and root growth and an
enhanced accumulation of anthocyanins and phenolic compounds. These changes were associated with
changes in the phytohormone profiles of roots and tops, which may cause an improved physiological
status, driving growth and anthocyanin accumulation.

A common response to UV light exposure is the increased accumulation of phenolic
compounds [27]. The mechanism underlying UV-B perception and the accumulation of photo-protectant
phenolic compounds is quite studied in aerial parts of plants [10,28–30]. Moreover, phenolic compounds
display antioxidant roles acting as direct scavengers of reactive oxygen species (ROS) [29]. At the cellular
level, UV-B irradiance initially triggers ROS formation, which subsequently increases the biosynthesis
of certain phenolic compounds, as part of the non-enzymatic antioxidant defences [26,31,32].
This phenomenon would explain the accumulation of these compounds in non-exposed tissues
to UV-B, as observed in maize roots [33]. In fact, low UV-B doses increased the flavonoid content in
leaves and roots of nasturtium [34] and kale [35], which indicates that UV-B may act as a systemic
inducer of phenolic contents in the whole plant. Likewise, in our study, although UV-B resulted in
a significant increase of TPC in tops, its effect was more evident in roots, where both TMC and TPC
increased by 13% (Figure 2). This effect may be based on shoot-root signalling events indirectly leading
to the accumulation of root phenolics. Moreover, the fact that sampling was not limited to the leaf
portions directly exposed to the UV-B light can explain the lower accumulation of phenolic compounds
in tops.

A second frequent effect of UV-B irradiance on plant physiology is a decrease in biomass [26].
Such an effect relies on the biosynthesis costs of flavonoids and related phenolic compounds, which are
generally higher than those of biomass [36]. Conversely, several authors have reported an increased
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plant biomass in response to moderate UV-B doses in faba bean [33], radish [37], and Arabidopsis [38].
A similar response was found in our work, where both top and root weights increased upon treatment
(Figure 1). It can be hypothesised that, given the extraordinary high concentration of anthocyanins
and, in general, of phenolic compounds of black carrot roots, the possible oxidative stress following
UV-B light exposure would be attenuated by plant defence mechanisms to an extent that no deleterious
effects were detected under our experimental conditions.

UV-B interferes with hormonal metabolism and transport [39,40]. Overall, among hormones,
IAA, cytokinins, and GAs act by promoting plant growth, whereas JA, ABA, and SA inhibit it [38,39].
In agreement with this, in the present study, the levels of the growth-inhibiting hormones ABA, JA,
and SA decreased in the tops of treated plants, while the growth-promoting cytokinins cZ and tZR
increased in roots (Figure 3), a response that correlated with the increases in top and root growth
(Figure 1c). These modulations may indicate that UV-B radiation aboveground promoted carrot growth
through signaling events that trigger cytokinin (cZ and tZR) accumulation in the root. In this sense,
decreasing cZ levels caused a reduced root growth in Arabidopsis and rice [41–43], which indicates an
active role of cZ in promoting root growth.

In contrast, the levels of IAA notably decreased in treated plants, which may be linked to the
inhibition of auxin biosynthesis by UV-B, as reported [44]. UV-B may induce the isomerization of ABA
to 50% trans, trans and 50% cis, trans [40,45], the latter being the active form; consequently, in tissues
where UV-B penetrates, the amount of active ABA may be negatively affected. Among cytokinins,
zeatin and its derivatives are the most important group of isoprenoid cytokinins. Although cZ has been
generally reported as scarcely active compared to its trans-isomer, recent studies assign physiological
functions to this hormone [46]; interestingly, cZ was quantifiable only in root samples, with its levels
lower in UV-B-treated plants. Inactive forms of cytokinins are abundant and serve as a reservoir [47].
In this sense, tZROG, a conjugated inactive form of cytokinin, displayed values an order of magnitude
higher than those for cZ and tZR in this study.

On the other hand, UV-B typically induces JA and SA, as stress-responsive hormones [40,48],
which is contradictory to our findings, where the levels of both hormones decreased in the tops of
treated plants. Considering that plants were UV-B treated for 14 days before harvest and sampling,
a distinct JA and SA modulation during the first days of treatment cannot be discarded, which at the
end of the experiment—likely involving an acclimation response—led to the hormone levels found in
this study.

5. Conclusions

Collectively, we can assert that moderate UV-B irradiance on black carrot may act simultaneously
to induce valuable secondary metabolites accumulation and plant growth. The analysis of the hormones
profile—which is supposed as the first study conducted on black carrots—reveals noticeable changes
upon UV-B-treatment and sheds light on the regulation of phenolic compounds in the root/ Beyond the
practical implications that this work may have regarding the utility of UV-B on anthocyanin production,
it represents a stepping-stone towards the understanding of UV-B regulation and stress in black carrot.

Author Contributions: Conceptualization, G.B.E., R.M., and H.L.; methodology, G.B.E., D.K.G., and R.M.;
formal analysis, G.B.E. and J.R.A.M.; investigation, R.M. and G.B.E.; data curation, J.R.A.M.; writing—original
draft preparation, G.B.E. and J.A.H.; writing—review and editing, R.M., G.B.E, J.A.H., J.R.A.M., H.L., and D.K.G.

Funding: This research was funded by the Danish Ministry of Science, Innovation, and Education grant number
6111-00240B and “Fundación Séneca” of the Agency of Science and Technology of the Region of Murcia grant
number 20405/SF/17.

Conflicts of Interest: The authors declare no conflict of interest.



Agronomy 2019, 9, 323 10 of 12

References

1. Barba-Espín, G.; Glied, S.; Crocoll, C.; Dzhanfezova, T.; Joernsgaard, B.; Okkels, F.; Lütken, H.; Müller, R.
Foliar-applied ethephon enhances the content of anthocyanin of black carrot roots (Daucus carota ssp. sativus
var. atrorubens Alef.). BMC Plant Biol. 2017, 17, 70. [CrossRef]

2. Montilla, E.C.; Arzaba, M.R.; Hillebrand, S.; Winterhalter, P. Anthocyanin composition of black carrot
(Daucus carota ssp. sativus var. atrorubens Alef.) cultivars Antonina, Beta Sweet, Deep Purple, and Purple
Haze. J. Agric. Food Chem. 2011, 59, 3385–3390. [CrossRef] [PubMed]

3. Smeriglio, A.; Denaro, M.; Barreca, D.; D.’Angelo, V.; Germanò, M.P.; Trombetta, D. Polyphenolic profile and
biological activities of black carrot crude extract (Daucus carota L. ssp. sativus var. atrorubens Alef.). Fitoterapia
2018, 124, 49–57. [CrossRef] [PubMed]

4. Kähkönen, M.P.; Heinonen, M. Antioxidant activity of anthocyanins and their aglycons. J. Agric. Food Chem.
2003, 51, 628–633. [CrossRef] [PubMed]

5. Burri, S.; Ekholm, A.; Håkansson, Å.; Tornberg, E.; Rumpunen, K. Antioxidant capacity and major phenol
compounds of horticultural plant materials not usually used. J. Funct. Foods 2017, 38, 119–127. [CrossRef]
[PubMed]

6. Huda-Faujan, N.; Noriham, A.; Abdullah Sani, N.; Babji, A.S. Antioxidant activity of plants methanolic
extracts containing phenolic compounds. Afr. J. Biotechnol. 2009, 8, 484–489.

7. Horvath, D.M.; Chua, N.H. The role of salicylic acid in systemic acquired resistance. Curr. Opin. Biotechnol.
1994, 5, 131–136. [CrossRef]

8. Reyes, L.F.; Cisneros-Zevallos, L. Wounding stress increases the phenolic content and antioxidant capacity of
purple-flesh potatoes (Solanum tuberosum L.). J. Agric. Food Chem. 2003, 51, 5296–5300. [CrossRef]

9. Heisler, G.M.; Grant, R.H.; Gao, W.; Slusser, J.R. Ultraviolet radiation and its impacts on agriculture and
forests. Agric. For. Meteorol. 2003, 120, 3–7. [CrossRef]

10. Jenkins, G.I. The UV-B Photoreceptor UVR8: From Structure to Physiology. Plant Cell 2014, 26, 21–37.
[CrossRef]

11. Caldwell, M.M.; Teramura, A.H.; Tevini, M.; Bornman, J.F.; Björn, L.O.; Kulandaivelu, G. Effects of increased solar
ultraviolet radiation on terrestrial plants. In United Nations Environment Programme. Environmental Effects of Ozone
Depletion: 1994 Assessment; United Nations Environment Program: Nairobi, Kenya, 1995; pp. 166–173.

12. Searles, P.S.; Flint, S.D.; Caldwell, M.M. A meta-analysis of plant field studies simulating stratospheric ozone
depletion. Oecologia 2001, 127, 1–10. [CrossRef] [PubMed]

13. Jansen, M.A.K. Ultraviolet-B radiation effects on plants: Induction of morphogenic responses. Physiol. Plant.
2002, 116, 423–429. [CrossRef]

14. Jenkins, G.I. Signal transduction in responses to UV-B radiation. Annu. Rev. Plant Biol. 2009, 60, 407–431.
[CrossRef] [PubMed]

15. Jordan, B.R. The effects of ultraviolet-B radiation on plants: A molecular perspective. Adv. Bot. Res. 1996, 22, 97–162.
16. Jansen, M.; Bornman, J.F. UV-B radiation: From generic stressor to specific regulator. Physiol. Plant. 2012, 145, 501–504.

[CrossRef]
17. Kazan, K.; Manners, J.M. The interplay between light and jasmonate signalling during defence and

development. J. Exp. Bot. 2011, 62, 4087–4100. [CrossRef] [PubMed]
18. Li, W.F.; Mao, J.; Yang, S.J.; Guo, Z.G.; Ma, Z.H.; Dawuda, M.M.; Zuo, C.W.; Chu, M.Y.; Chen, B.H. Anthocyanin

accumulation correlates with hormones in the fruit skin of ‘Red Delicious’ and its four generation bud sport
mutants. BMC Plant Biol. 2018, 18, 363–377. [CrossRef] [PubMed]

19. Loreti, E.; Povero, G.; Novi, G.; Solfanelli, C.; Alpi, A.; Perata, P. Gibberellins, jasmonate and abscisic acid
modulate the sucrose-induced expression of anthocyanin biosynthetic genes in Arabidopsis. New Phytol.
2008, 179, 1004–1016. [CrossRef] [PubMed]
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