9 research outputs found

    Human Neural Progenitor Cells are Productively Infected by R5-tropic HIV-1: Opiate Interactions on Infection and Function Involve Cdk5 Signaling

    Get PDF
    Human immunodeficiency virus type 1 (HIV-1) is known to cause a spectrum of neurological, behavioral and motor deficits collectively termed as HIV-1 associated neurocognitive impairments (HAND). Opiates augment HIV-related CNS complications through both direct and indirect mechanisms that disrupt glial and neuronal function. All CNS macroglia and neurons derive from neural progenitor cells (NPCs) during development, and NPCs in the adult brain contribute to repair processes. Since disruptions in NPC function are known to impact CNS populations and brain function in a number of disease/injury conditions, we determined whether HIV ± opiate exposure affected the maturation and fate of human NPCs (hNPCs). As hNPC infection by HIV has occasionally been reported, we also reexamined this question, and parsed between effects due directly to hNPC infection by HIV, or to hNPC dysfunction caused by the infective milieu. Multiple approaches confirmed the infection of hNPCs by R5 tropic (CCR5 utilizing) HIVBaL, and demonstrated that active infection could be sequentially transferred to naïve hNPCs. Exposure to supernatant from HIVBaL-infected cells (HIVsup) reduced hNPC proliferation and led to premature differentiation into astrocytes and neurons. Morphine co-exposure prolonged hNPC infection and exacerbated functional effects of HIVsup. Neither purified virions nor UV-inactivated HIVsup altered proliferation, indicating that this effect did not require infection. Gene array analysis and RT-qPCR with immunoblot validation suggested that Cdk5 signaling was involved in HIV-morphine interactions. siRNA-mediated knockdown of Cdk5 expression attenuated the effect of HIV-1 and morphine on hNPC proliferation and MAP2 differentiation, but also increased hNPC death. Furthermore, in an attempt to understand the role of mu-opioid receptor (MOR) splice variants on the interactive effect of HIV-1 and morphine on hNPCs, we found that both MOR-1 and MOR-1K are differentially regulated by HIV-1 in these cells. This suggests that these splice variants may have differential actions in the response of hNPCs to HIV-1 and morphine co-exposure. Given the overlap of Cdk5 and MOR signaling, it is likely that MOR-1K and/or MOR-1 converge with Cdk5 in the mechanism underlying HIV-1 and morphine interaction in hNPCs. Overall, dysregulation of hNPC functions by the infectious environment may create cell population imbalances that contribute to CNS deficits in both adult and pediatric patients. Additionally, infected hNPCs may pass virus to their progeny, and serve as an unappreciated viral reservoir. The recent epidemic of opiate/heroin abuse highlights the clinical importance of HIV and opiate interactions

    The Regulation of Mitochondrial DNMT1 During Oxidative Stress

    Get PDF
    Epigenetics is the study of heritable gene expression due to alterations in the DNA structure other than the underlying DNA sequence. DNA methylation is one of the three types of epigenetic modifications found in the eukaryotic system. It involves the incorporation of a methyl group at the 5-position of cytosine residues in the DNA. DNA methylation is associated with several notorious disorders and diseases including Fragile X Syndrome, neurodegenerative disease (Parkinson’s, Alzhiemer, etc), diabetes and cancer. Cytosine methylation of mitochondrial DNA (mtDNA) was first demonstrated several decades ago but the mechanism of generating cytosine modification and its functional importance remain elusive. Our laboratory recently demonstrated that the enzyme involved in cytosine modification of mtDNA is a novel mitochondrial isoform of DNA Methyltransferase 1, mtDNMT1. This protein is encoded in the nucleus and targeted to the mitochondria via a N-terminal targeting sequence. Bioinformatic analysis of the DNMT1 coding sequence showed a consensus NRF1 binding site that coincidently overlaps a p53 binding site within the promoter region, previously shown by this group to repress DNMT1 expression. Previous studies in the Taylor laboratory showed that mtDNMT protein expression was regulated by the transcription factor NRF1 as well as its coactivator PGC1α. PGC1α and NRF1 stimulate a large body of genes that are involved in mitochondrial biogenesis and cellular respiration in response to environmental stress. Considering the previous findings in our laboratory regarding mtDNMT1 regulation and the importance of PGC1α and NRF1 in oxidative homeostasis, we asked whether there is a mitochondrial epigenetic component in the cell’s response to cellular stress and whether up-regulation of mtDNMT1 might be part of the general response to this stress. To investigate the relationship between mtDNA methylation and oxidative homeostasis we examined the regulation of mtDNMT1 by transcription factors that respond to oxidative stress. Conditions that induced oxidative stress were applied to HCT 116 and SH-SY5Y cell lines and the protein expression of DNMT1 was observed. Ethanol and hypoxia- induced oxidative stress were observed to increase to protein level of mtDNMT1 while total DNMT1 level either remained constant or decreased. The protein level of PGC1α and NRF1 remained low in HCT 116 cells exposed to hypoxic stress, despite elevated mtDNMT1 protein level. ChIP analysis of HCT 116 cells exposed to hypoxic stress demonstrated that NRF1 and PGC1α are not regulating the transcription of DNMT1i in the mitochondria. However, we observed that p53 dissociated from the DNMT1 promoter upon hypoxic stress, indicating that the up-regulation of mtDNMT1 is through the relief of p53 suppression. The findings of this investigation proved that mtDNMT1 is receptive to oxidative stress through the regulation by p53 and suggested that mitochondrial epigenetics may be playing an integral role in the cellular stress response toward hypoxia

    Differential expression of the alternatively spliced OPRM1 isoform μ-opioid receptor-1K in HIV-infected individuals

    Get PDF
    We previously examined the expression of specific C-terminal μ-opioid receptor (MOR) splice variants in human central nervous system cell types and HIV-infected brain tissue from subjects with neurocognitive impairment ± HIV encephalitis (HIVE). In the present study, we examined the N-terminal splice variant MOR-1K which mediates excitatory cellular signaling

    Deep Sequencing Reveals Central Nervous System Compartmentalization in Multiple Transmitted/Founder Virus Acute HIV-1 Infection

    No full text
    HIV-1 disseminates to a broad range of tissue compartments during acute HIV-1 infection (AHI). The central nervous system (CNS) can serve as an early and persistent site of viral replication, which poses a potential challenge for HIV-1 remission strategies that target the HIV reservoir. CNS compartmentalization is a key feature of HIV-1 neuropathogenesis. Thus far, the timing of how early CNS compartmentalization develops after infection is unknown. We examined whether HIV-1 transmitted/founder (T/F) viruses differ between CNS and blood during AHI using single-genome sequencing of envelope gene and further examined subregions in pol and env using next-generation sequencing in paired plasma and cerebrospinal fluid (CSF) from 18 individuals. Different proportions of mostly minor variants were found in six of the eight multiple T/F-infected individuals, indicating enrichment of some variants in CSF that may lead to significant compartmentalization in the later stages of infection. This study provides evidence for the first time that HIV-1 compartmentalization in the CNS can occur within days of HIV-1 exposure in multiple T/F infections. Further understanding of factors that determine enrichment of T/F variants in the CNS, as well as potential long-term implications of these findings for persistence of HIV-1 reservoirs and neurological impairment in HIV, is needed

    Opiate Drugs with Abuse Liability Hijack the Endogenous Opioid System to Disrupt Neuronal and Glial Maturation in the Central Nervous System

    No full text
    corecore