50 research outputs found

    COMPARISON OF DIFFERENT FUSION ALGORITHMS IN URBAN AND AGRICULTURAL AREAS USING SAR (PALSAR AND RADARSAT) AND OPTICAL (SPOT) IMAGES

    Get PDF
    Image fusion techniques of remote sensing data are formal frameworks for merging and using images originating from different sources. This research investigates the quality assessment of Synthetic Aperture Radar (SAR) data fusion with optical imagery. Two different SAR data from different sensors namely RADARSAT-1 and PALSAR were fused with SPOT-2 data. Both SAR data have the same resolutionsand polarisations; however images were gathered in different frequencies as C band and L band respectively. This paper contributes to the comparative evaluation of fused data for understanding the performance of implemented image fusionalgorithms such as Ehlers, IHS (Intensity-Hue-Saturation), HPF (High Pass Frequency), two dimensional DWT (Discrete Wavelet Transformation), and PCA (Principal Component Analysis) techniques. Quality assessments of fused imageswere performed both qualitatively and quantitatively. For the statistical analysis; bias, correlation coefficient (CC), difference in variance (DIV), standard deviation difference (SDD), universal image quality index (UIQI) methods were applied on the fused images. The evaluations were performed by categorizing the test area into two as “urban” and “agricultural”. It has been observed that some of the methodshave enhanced either the spatial quality or preserved spectral quality of the original SPOT XS image to various degrees while some approaches have introduced distortions. In general we noted that Ehlers’ spectral quality is far better than those of the other methods. HPF performs almost best in agricultural areas for both SAR images

    EVALUATION OF DEM DERIVED BY REPEAT-PASS X-BAND STRIPMAP MODE PAZ DATA

    Get PDF
    Abstract. This paper, presents the initial results of digital elevation model (DEM) extraction from PAZ Synthetic Aperture Radar (SAR) satellite images using repeat-pass interferometric analysis. We used a multi-temporal high-resolution strip-map mode X-band satellite image that has a single polarization. Five main classes, i.e., volcanic structures, agriculture, settlement, sand dune and plain bareland are considered depending on the structure of the region. Within the category, the coherence value and DEM value are evaluated. In the accuracy assessment analysis, a reference map produced from aerial photogrammetry is used. Additionally, global DEM TanDEM-X data is also tested in the study region. In the analysis, quality metrics, mean error (ME), root means square error (RMSE), standard deviation (STD), and the normalized median absolute deviation (NMAD) are used. The results showed that as the temporal baseline increases the coherence values and the quality of the DEM product decrease. The RMSE values range between 2.36 m to 7.09 m in different classes. The TanDEM-X data provided high accuracies over each class range from 0.88 m to 2.40 m. Since the study area is vulnerable to sinkhole formation, sinkhole-like signals were also observed in the interferograms obtained from different and sequential pairs. The high-resolution repeat-pass PAZ data pointed out its potential for interferometric products generation

    SPATIO-TEMPORAL ANALYSIS OF POLLUTANT GASES USING SENTINEL-5P TROPOMI DATA ON THE GOOGLE EARTH ENGINE DURING THE COVID-19 PANDEMIC IN THE MARMARA REGION, TÜRKIYE

    Get PDF
    In this study, the changes in nitrogen dioxide (NO2), carbon monoxide (CO) and sulfur dioxide (SO2) pollutant gases were examined between June 2019 and June 2021 during the COVID-19 pandemic period. For this purpose, monthly and annual averages of Sentinel-5P TROPOspheric Monitoring Instrument (TROPOMI) values were calculated on the Google Earth Engine (GEE) platform. According to the results obtained using the GEE platform, the average column density values of NO2, CO, and SO2 in the Marmara Region between the selected dates were calculated as 8.40E-05 mol/m2, 3.23E-02 mol/m2, and 3.75E-04 mol/m2, respectively. During the lockdown, these values decreased to 7.84E-05 mol/m2, 3.05E-02 mol/m2 and 2.75E-04 mol/m2 respectively. According to TROPOMI data, these three gas column density values showed a decreasing trend during the COVID-19 pandemic lockdown period. However, in a 25-month examination in general, these three gas values showed an increasing trend due to population growth, industrialization, and increasing traffic density

    MONITORING THE SLOWLY DEVELOPING LANDSLIDE WITH THE INSAR TECHNIQUE IN SAMSUN PROVINCE, NORTHERN TURKEY

    Get PDF
    Landslides are prominent natural events with high destructive power. Since they affect large areas, it is important to monitor the areas they cover and analyse their movement. Remote sensing data and image processing techniques have been used to monitor landslides in different areas. Synthetic aperture radar (SAR) data, particularly with the Interferometric SAR (InSAR) method, is used to determine the velocity vector of the surface motion. This study aims to detect the landslide movements in Samsun, located in the north of Turkey, using persistent scattering InSAR method. Archived Copernicus Sentinel-1 satellite images taken between 2017 and 2022 were used in both descending and ascending directions. The results revealed surface movements in the direction of the line of sight, ranging between −6 and 6 mm/year in the study area. Persistent Scatterer (PS) points were identified mainly in human structures such as roads, coasts, ports, and golf courses, especially in settlements. While some regions exhibited similar movements in both descending and ascending results, opposite movements were observed in some regions. The results produced in both descending and ascending directions were used together and decomposed into horizontal and vertical deformation components. It was observed that the western coastal part experienced approximately 4.5 cm/year vertical deformation, while the central part there is more significant horizontal deformation, reaching up to approximately 6 cm/year

    Outcomes from elective colorectal cancer surgery during the SARS-CoV-2 pandemic

    Get PDF
    This study aimed to describe the change in surgical practice and the impact of SARS-CoV-2 on mortality after surgical resection of colorectal cancer during the initial phases of the SARS-CoV-2 pandemic

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Evaluating training data for crop type classifıcation using support vector machine and random forests : Procjena klasifikacije testnih podataka za potrebe određivanja vrste kulture korištenjem metoda mašina vektora podrške i slučajnih šuma

    No full text
    This study evaluated the effectiveness of three different training datasets for crop type classification using both support vector machines (SVMs) and random forests (RFs). In supervised classification, one of the main facing challanges is to define the training set for the full representation of land use/cover classes. The adaptation of traning data, with the implemented classifier and its characteristics (purity, size and distribution of sample pixels), are of key importance in this context. The experimental results were compared in terms of the classification accuracy with 10-fold cross validation. Results suggest that higher classification accuracies were obtained by less number of training samples. Furthermore, it is highlighted that both methods (SVMs and RFs) are proven to be the effective and powerful classifiers for crop type classification

    Polarimetric Target Decompositions and Light Gradient Boosting Machine for Crop Classification: A Comparative Evaluation

    No full text
    In terms of providing various scattering mechanisms, polarimetric target decompositions provide certain benefits for the interpretation of PolSAR images. This paper tested the capabilities of different polarimetric target decompositions in crop classification, while using a recently launched ensemble learning algorithm—namely Light Gradient Boosting Machine (LightGBM). For the classification of different crops (maize, potato, wheat, sunflower, and alfalfa) in the test site, multi-temporal polarimetric C-band RADARSAT-2 images were acquired over an agricultural area near Konya, Turkey. Four different decomposition models (Cloude⁻Pottier, Freeman⁻Durden, Van Zyl, and Yamaguchi) were employed to evaluate polarimetric target decomposition for crop classification. Besides the polarimetric target decomposed parameters, the original polarimetric features (linear backscatter coefficients, coherency, and covariance matrices) were also incorporated for crop classification. The experimental results demonstrated that polarimetric target decompositions, with the exception of Cloude⁻Pottier, were found to be superior to the original features in terms of overall classification accuracy. The highest classification accuracy (92.07%) was achieved by Yamaguchi, whereas the lowest (75.99%) was achieved by the covariance matrix. Model-based decompositions achieved higher performance with respect to eigenvector-based decompositions in terms of class-based accuracies. Furthermore, the results emphasize the added benefits of model-based decompositions for crop classification using PolSAR data

    Comparison of different fusion algorithms in urban and agricultural areas using sar (palsar and radarsat) and optical (spot) images

    No full text
    Image fusion techniques of remote sensing data are formal frameworks for merging and using images originating from different sources. This research investigates the quality assessment of Synthetic Aperture Radar (SAR) data fusion with optical imagery. Two different SAR data from different sensors namely RADARSAT-1 and PALSAR were fused with SPOT-2 data. Both SAR data have the same resolutions and polarisations; however images were gathered in different frequencies as C band and L band respectively. This paper contributes to the comparative evaluation of fused data for understanding the performance of implemented image fusion algorithms such as Ehlers, IHS (Intensity-Hue-Saturation), HPF (High Pass Frequency), two dimensional DWT (Discrete Wavelet Transformation), and PCA (Principal Component Analysis) techniques. Quality assessments of fused images were performed both qualitatively and quantitatively. For the statistical analysis; bias, correlation coefficient (CC), difference in variance (DIV), standard deviation difference (SDD), universal image quality index (UIQI) methods were applied on the fused images. The evaluations were performed by categorizing the test area into two as "urban" and "agricultural". It has been observed that some of the methods have enhanced either the spatial quality or preserved spectral quality of the original SPOT XS image to various degrees while some approaches have introduced distortions. In general we noted that Ehlers' spectral quality is far better than those of the other methods. HPF performs almost best in agricultural areas for both SAR images
    corecore