18 research outputs found

    Overlay Tool© for aCGHViewer©: An Analysis Module Built for aCGHViewer© used to Perform Comparisons of Data Derived from Different Microarray Platforms

    Get PDF
    The Overlay Tool© has been developed to combine high throughput data derived from various microarray platforms. This tool analyzes high-resolution correlations between gene expression changes and either copy number abnormalities (CNAs) or loss of heterozygosity events detected using array comparative genomic hybridization (aCGH). Using an overlay analysis which is designed to be performed using data from multiple microarray platforms on a single biological sample, the Overlay Tool© identifies potentially important genes whose expression profiles are changed as a result of losses, gains and amplifications in the cancer genome. In addition, the Overlay Tool© will incorporate loss of heterozygosity (LOH) probability data into this overlay procedure. To facilitate this analysis, we developed an application which computationally combines two or more high throughput datasets (e.g. aCGH/expression) into a single categorized dataset for visualization and interrogation using a gene-centric approach. As such, data from virtually any microarray platform can be incorporated without the need to remap entire datasets individually. The resultant categorized (overlay) data set can be conveniently viewed using our in-house visualization tool, aCGHViewer© (Shankar et al. 2006), which serves as a conduit to public databases such as UCSC and NCBI, to rapidly investigate genes of interest

    A forward-backward fragment assembling algorithm for the identification of genomic amplification and deletion breakpoints using high-density single nucleotide polymorphism (SNP) array

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>DNA copy number aberration (CNA) is one of the key characteristics of cancer cells. Recent studies demonstrated the feasibility of utilizing high density single nucleotide polymorphism (SNP) genotyping arrays to detect CNA. Compared with the two-color array-based comparative genomic hybridization (array-CGH), the SNP arrays offer much higher probe density and lower signal-to-noise ratio at the single SNP level. To accurately identify small segments of CNA from SNP array data, segmentation methods that are sensitive to CNA while resistant to noise are required.</p> <p>Results</p> <p>We have developed a highly sensitive algorithm for the edge detection of copy number data which is especially suitable for the SNP array-based copy number data. The method consists of an over-sensitive edge-detection step and a test-based forward-backward edge selection step.</p> <p>Conclusion</p> <p>Using simulations constructed from real experimental data, the method shows high sensitivity and specificity in detecting small copy number changes in focused regions. The method is implemented in an R package FASeg, which includes data processing and visualization utilities, as well as libraries for processing Affymetrix SNP array data.</p

    Pooled analysis of WHO Surgical Safety Checklist use and mortality after emergency laparotomy

    Get PDF
    Background The World Health Organization (WHO) Surgical Safety Checklist has fostered safe practice for 10 years, yet its place in emergency surgery has not been assessed on a global scale. The aim of this study was to evaluate reported checklist use in emergency settings and examine the relationship with perioperative mortality in patients who had emergency laparotomy. Methods In two multinational cohort studies, adults undergoing emergency laparotomy were compared with those having elective gastrointestinal surgery. Relationships between reported checklist use and mortality were determined using multivariable logistic regression and bootstrapped simulation. Results Of 12 296 patients included from 76 countries, 4843 underwent emergency laparotomy. After adjusting for patient and disease factors, checklist use before emergency laparotomy was more common in countries with a high Human Development Index (HDI) (2455 of 2741, 89.6 per cent) compared with that in countries with a middle (753 of 1242, 60.6 per cent; odds ratio (OR) 0.17, 95 per cent c.i. 0.14 to 0.21, P <0001) or low (363 of 860, 422 per cent; OR 008, 007 to 010, P <0.001) HDI. Checklist use was less common in elective surgery than for emergency laparotomy in high-HDI countries (risk difference -94 (95 per cent c.i. -11.9 to -6.9) per cent; P <0001), but the relationship was reversed in low-HDI countries (+121 (+7.0 to +173) per cent; P <0001). In multivariable models, checklist use was associated with a lower 30-day perioperative mortality (OR 0.60, 0.50 to 073; P <0.001). The greatest absolute benefit was seen for emergency surgery in low- and middle-HDI countries. Conclusion Checklist use in emergency laparotomy was associated with a significantly lower perioperative mortality rate. Checklist use in low-HDI countries was half that in high-HDI countries.Peer reviewe

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    High-Resolution Identification of Chromosomal Abnormalities Using Oligonucleotide Arrays Containing 116,204 SNPs

    Get PDF
    Mutation of the human genome ranges from single base-pair changes to whole-chromosome aneuploidy. Karyotyping, fluorescence in situ hybridization, and comparative genome hybridization are currently used to detect chromosome abnormalities of clinical significance. These methods, although powerful, suffer from limitations in speed, ease of use, and resolution, and they do not detect copy-neutral chromosomal aberrations—for example, uniparental disomy (UPD). We have developed a high-throughput approach for assessment of DNA copy-number changes, through use of high-density synthetic oligonucleotide arrays containing 116,204 single-nucleotide polymorphisms, spaced at an average distance of 23.6 kb across the genome. Using this approach, we analyzed samples that failed conventional karyotypic analysis, and we detected amplifications and deletions across a wide range of sizes (1.3–145.9 Mb), identified chromosomes containing anonymous chromatin, and used genotype data to determine the molecular origin of two cases of UPD. Furthermore, our data provided independent confirmation for a case that had been misinterpreted by karyotype analysis. The high resolution of our approach provides more-precise breakpoint mapping, which allows subtle phenotypic heterogeneity to be distinguished at a molecular level. The accurate genotype information provided on these arrays enables the identification of copy-neutral loss-of-heterozygosity events, and the minimal requirement of DNA (250 ng per array) allows rapid analysis of samples without the need for cell culture. This technology overcomes many limitations currently encountered in routine clinical diagnostic laboratories tasked with accurate and rapid diagnosis of chromosomal abnormalities

    Overlay Tool for aCGHViewer: An Analysis Module Built for aCGHViewer used to Perform Comparisons of Data Derived from Different Microarray Platforms

    No full text
    The Overlay Tool © has been developed to combine high throughput data derived from various microarray platforms. This tool analyzes high-resolution correlations between gene expression changes and either copy number abnormalities (CNAs) or loss of heterozygosity events detected using array comparative genomic hybridization (aCGH). Using an overlay analysis which is designed to be performed using data from multiple microarray platforms on a single biological sample, the Overlay Tool © identifies potentially important genes whose expression profiles are changed as a result of losses, gains and amplifications in the cancer genome. In addition, the Overlay Tool © will incorporate loss of heterozygosity (LOH) probability data into this overlay procedure. To facilitate this analysis, we developed an application which computationally combines two or more high throughput datasets (e.g. aCGH/expression) into a single categorized dataset for visualization and interrogation using a gene-centric approach. As such, data from virtually any microarray platform can be incorporated without the need to remap entire datasets individually. The resultant categorized (overlay) data set can be conveniently viewed using our in-house visualization tool, aCGHViewer © (Shankar et al. 2006), which serves as a conduit to public databases such as UCSC and NCBI, to rapidly investigate genes of interest

    Genomic Maps and Comparative Analysis of Histone Modifications in Human and Mouse

    Get PDF
    We mapped histone H3 lysine 4 di- and trimethylation and lysine 9/14 acetylation across the nonrepetitive portions of human chromosomes 21 and 22 and compared patterns of lysine 4 dimethylation for several orthologous human and mouse loci. Both chromosomes show punctate sites enriched for modified histones. Sites showing trimethylation correlate with transcription starts, while those showing mainly dimethylation occur elsewhere in the vicinity of active genes. Punctate methylation patterns are also evident at the cytokine and IL-4 receptor loci. The Hox clusters present a strikingly different picture, with broad lysine 4-methylated regions that overlay multiple active genes. We suggest these regions represent active chromatin domains required for the maintenance of Hox gene expression. Methylation patterns at orthologous loci are strongly conserved between human and mouse even though many methylated sites do not show sequence conservation notably higher than background. This suggests that the DNA elements that direct the methylation represent only a small fraction of the region or lie at some distance from the site
    corecore