50 research outputs found

    Non-perturbative dynamics of hot non-Abelian gauge fields: beyond leading log approximation

    Get PDF
    Many aspects of high-temperature gauge theories, such as the electroweak baryon number violation rate, color conductivity, and the hard gluon damping rate, have previously been understood only at leading logarithmic order (that is, neglecting effects suppressed only by an inverse logarithm of the gauge coupling). We discuss how to systematically go beyond leading logarithmic order in the analysis of physical quantities. Specifically, we extend to next-to-leading-log order (NLLO) the simple leading-log effective theory due to Bodeker that describes non-perturbative color physics in hot non-Abelian plasmas. A suitable scaling analysis is used to show that no new operators enter the effective theory at next-to-leading-log order. However, a NLLO calculation of the color conductivity is required, and we report the resulting value. Our NLLO result for the color conductivity can be trivially combined with previous numerical work by G. Moore to yield a NLLO result for the hot electroweak baryon number violation rate.Comment: 20 pages, 1 figur

    Meson Wave Functions From Holographic Qcd And The Role Of Infrared Renormalons In Proton-Proton Collisions

    Full text link
    We calculate the contribution of the higher twist Feynman diagrams to the large-pTp_T inclusive pion production cross section in proton-proton collisions in the case of the running and frozen coupling approaches within holographic QCD. The structure of infrared renormalon singularities of the higher twist subprocess cross section and it's resummed expression are found. We compare the resummed higher twist cross sections with the ones obtained in the framework of the frozen coupling approximation and leading twist cross section. We discuss the phenomenological consequences of possible higher-twist contributions to the pion production in proton-proton collisions within holographic QCD.Comment: 19 pages, 14 figures. arXiv admin note: substantial text overlap with arXiv:1202.2632, arXiv:1107.1562, arXiv:1008.1646, arXiv:0803.019

    Advances in perturbative thermal field theory

    Full text link
    The progress of the last decade in perturbative quantum field theory at high temperature and density made possible by the use of effective field theories and hard-thermal/dense-loop resummations in ultrarelativistic gauge theories is reviewed. The relevant methods are discussed in field theoretical models from simple scalar theories to non-Abelian gauge theories including gravity. In the simpler models, the aim is to give a pedagogical account of some of the relevant problems and their resolution, while in the more complicated but also more interesting models such as quantum chromodynamics, a summary of the results obtained so far are given together with references to a few most recent developments and open problems.Comment: 84 pages, 18 figues, review article submitted to Reports on Progress in Physics; v2, v3: minor additions and corrections, more reference

    Gauge-fixing parameter dependence of two-point gauge variant correlation functions

    Get PDF
    The gauge-fixing parameter Ο\xi dependence of two-point gauge variant correlation functions is studied for QED and QCD. We show that, in three Euclidean dimensions, or for four-dimensional thermal gauge theories, the usual procedure of getting a general covariant gauge-fixing term by averaging over a class of covariant gauge-fixing conditions leads to a nontrivial gauge-fixing parameter dependence in gauge variant two-point correlation functions (e.g. fermion propagators). This nontrivial gauge-fixing parameter dependence modifies the large distance behavior of the two-point correlation functions by introducing additional exponentially decaying factors. These factors are the origin of the gauge dependence encountered in some perturbative evaluations of the damping rates and the static chromoelectric screening length in a general covariant gauge. To avoid this modification of the long distance behavior introduced by performing the average over a class of covariant gauge-fixing conditions, one can either choose a vanishing gauge-fixing parameter or apply an unphysical infrared cutoff.Comment: 21 pages, RevTe

    If I Were You: Perceptual Illusion of Body Swapping

    Get PDF
    The concept of an individual swapping his or her body with that of another person has captured the imagination of writers and artists for decades. Although this topic has not been the subject of investigation in science, it exemplifies the fundamental question of why we have an ongoing experience of being located inside our bodies. Here we report a perceptual illusion of body-swapping that addresses directly this issue. Manipulation of the visual perspective, in combination with the receipt of correlated multisensory information from the body was sufficient to trigger the illusion that another person's body or an artificial body was one's own. This effect was so strong that people could experience being in another person's body when facing their own body and shaking hands with it. Our results are of fundamental importance because they identify the perceptual processes that produce the feeling of ownership of one's body

    First results of the CAST-RADES haloscope search for axions at 34.67 ÎŒeV

    Get PDF
    We present results of the Relic Axion Dark-Matter Exploratory Setup (RADES), a detector which is part of the CERN Axion Solar Telescope (CAST), searching for axion dark matter in the 34.67ÎŒeV mass range. A radio frequency cavity consisting of 5 sub-cavities coupled by inductive irises took physics data inside the CAST dipole magnet for the first time using this filter-like haloscope geometry. An exclusion limit with a 95% credibility level on the axion-photon coupling constant of gaÎł & 4 × 10−13 GeV−1 over a mass range of 34.6738ÎŒeV < ma < 34.6771ÎŒeV is set. This constitutes a significant improvement over the current strongest limit set by CAST at this mass and is at the same time one of the most sensitive direct searches for an axion dark matter candidate above the mass of 25ÎŒeV. The results also demonstrate the feasibility of exploring a wider mass range around the value probed by CAST-RADES in this work using similar coherent resonant cavitiesWe wish to thank our colleagues at CERN, in particular Marc Thiebert from the coating lab, as well as the whole team of the CERN Central Cryogenic Laboratory for their support and advice in speci c aspects of the project. We thank Arefe Abghari for her contributions as the project's summer student during 2018. This work has been funded by the Spanish Agencia Estatal de Investigacion (AEI) and Fondo Europeo de Desarrollo Regional (FEDER) under project FPA-2016-76978-C3-2-P and PID2019-108122GB-C33, and was supported by the CERN Doctoral Studentship programme. The research leading to these results has received funding from the European Research Council and BD, JG and SAC acknowledge support through the European Research Council under grant ERC-2018-StG-802836 (AxScale project). BD also acknowledges fruitful discussions at MIAPP supported by DFG under EXC-2094 { 390783311. IGI acknowledges also support from the European Research Council (ERC) under grant ERC-2017-AdG-788781 (IAXO+ project). JR has been supported by the Ramon y Cajal Fellowship 2012-10597, the grant PGC2018-095328-B-I00(FEDER/Agencia estatal de investigaci on) and FSE-GA2017-2019-E12/7R (Gobierno de AragĂłn/FEDER) (MINECO/FEDER), the EU through the ITN \Elusives" H2020-MSCA-ITN-2015/674896 and the Deutsche Forschungsgemeinschaft under grant SFB-1258 as a Mercator Fellow. CPG was supported by PROMETEO II/2014/050 of Generalitat Valenciana, FPA2014-57816-P of MINECO and by the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreements 690575 and 674896. AM is supported by the European Research Council under Grant No. 742104. Part of this work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344

    Gauge bosons at zero and finite temperature

    Full text link
    Gauge theories of the Yang-Mills type are the single most important building block of the standard model and beyond. Since Yang-Mills theories are gauge theories their elementary particles, the gauge bosons, cannot be described without fixing a gauge. Beyond perturbation theory, gauge-fixing in non-Abelian gauge theories is obstructed by the Gribov-Singer ambiguity. The construction and implementation of a method-independent gauge-fixing prescription to resolve this ambiguity is the most important step to describe gauge bosons beyond perturbation theory. Proposals for such a procedure, generalizing the perturbative Landau gauge, are described here. Their implementation are discussed for two example methods, lattice gauge theory and the quantum equations of motion. The most direct access to the properties of the gauge bosons is provided by their correlation functions. The corresponding two- and three-point correlation functions are presented at all energy scales. These give access to the properties of the gauge bosons, like their absence from the asymptotic physical state space, the absence of an on-shell mass pole, particle-like properties at high energies, and their running couplings. Furthermore, auxiliary degrees of freedom are introduced during gauge-fixing, and their properties are discussed as well. These results are presented for two, three, and four dimensions, and for various gauge algebras. Finally, the modifications of the properties of gauge bosons at finite temperature are presented. Evidence is provided that these reflect the phase structure of Yang-Mills theory. However, it is found that the phase transition is not deconfining the gauge bosons, although the bulk thermodynamical behavior is of a Stefan-Boltzmann type. The resolution of this apparent contradiction is also presented. This resolution also provides an explicit and constructive solution to the Linde problem.Comment: v2: 153 pages, 45 figures, revised, updated, and extended version submitted on invitation to Physics Reports; v3: Intermediate update, 152 pages, 45 figures, minor errors corrected, reference list extended; v3 minor typographical changes and corrections, added references, version to appear in Physics Report
    corecore