187 research outputs found

    Novos registros de Anastrepha (Diptera: Tephritidae) no Estado do Amapá, Brasil.

    Get PDF
    Este trabalho teve como objetivo caracterizar a riqueza de espécies de Anastrepha (Diptera: Tephritidae) nos municípios de Ferreira Gomes, Mazagão e Porto Grande, estado do Amapá. Foram realizadas amostragem com armadilhas tipo McPhail (5 armadilhas por município), contendo proteína hidrolisada de milho a 5%, estabilizada com bórax, dispostas a 1,8m do solo, espaçadas a uma distância de 100m uma da outra. Em Mazagão, as armadilhas foram instaladas no Campo Experimental da Embrapa; já em Ferreira Gomes e Porto Grande, as armadilhas foram instaladas em área de floresta de terra firme. As armadilhas foram inspecionadas a cada dez dias, durante o período de novembro de 2008 a julho de 2009. A triagem, quantificação e identificação dos insetos foram realizadas no Laboratório de Entomologia da Embrapa Amapá, em Macapá. Foram capturados 183 espécimes de Anastrepha (117 machos e 66 fêmeas), pertencentes a 12 espécies: Anastrepha striata Schiner (65 espécimes), Anastrepha fraterculus (Wiedemann) (14), Anastrepha coronilli Carrejo & González (13), Anastrepha sodalis Stone (7), Anastrepha anomala Stone (5), Anastrepha hastata Stone (4), Anastrepha distincta Greene (3), Anastrepha isolata Norrbom & Korytkowski (2), Anastrepha hambletoni Lima (1), Anastrepha obliqua (Macquart) (1), Anastrepha serpentina (Wiedemann) (1) e Anastrepha sororcula Zucchi (1). As espécies A. hambletoni (capturada em Ferreira Gomes) e A. isolata (capturada em Porto Grande) são registradas pela primeira vez no estado do Amapá. Trata-se de duas espécies com restrita ocorrência no Brasil (A. hambletoni reportada somente no estado de Minas Gerais e A. isolata no estado do Amazonas), sem hospedeiro conhecido. Esses novos registros evidenciam a importância da realização de levantamentos em áreas de floresta nativa, para o conhecimento da riqueza de espécies de moscas-das-frutas

    Raman Scattering near Metal Nanostructures

    Full text link
    We study Raman scattering in active media placed in proximity of different types of metal nanostructures, at wavelengths that display either Fabry-Perot or plasmonic resonances, or a combination of both. We use a semi-classical approach to derive equations of motion for Stokes and anti-Stokes fields that arise from quantum fluctuations. Our calculations suggest that local field enhancement yields Stokes and anti-Stokes conversion efficiencies between five and seven orders of magnitudes larger compared to cases without the metal nanostructure. We also show that to first order in the linear susceptibility the local field correction induces a dynamic, intensity-dependent frequency detuning that at high intensities tends to quench Raman gain

    Prognostic Significance of MYC Rearrangement and Translocation Partner in Diffuse Large B-Cell Lymphoma : A Study by the Lunenburg Lymphoma Biomarker Consortium

    Get PDF
    PURPOSE: MYC rearrangement (MYC-R) occurs in approximately 10% of diffuse large B-cell lymphomas (DLBCLs) and has been associated with poor prognosis in many studies. The impact of MYC-R on prognosis may be influenced by the MYC partner gene (immunoglobulin [IG] or a non-IG gene). We evaluated a large cohort of patients through the Lunenburg Lymphoma Biomarker Consortium to validate the prognostic significance of MYC-R (single-, double-, and triple-hit status) in DLBCL within the context of the MYC partner gene. METHODS: The study cohort included patients with histologically confirmed DLBCL morphology derived from large prospective trials and patient registries in Europe and North America who were uniformly treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone therapy or the like. Fluorescence in situ hybridization for the MYC, BCL2, BCL6, and IG heavy and light chain loci was used, and results were correlated with clinical outcomes. RESULTS: A total of 5,117 patients were identified of whom 2,383 (47%) had biopsy material available to assess for MYC-R. MYC-R was present in 264 (11%) of 2,383 patients and was associated with a significantly shorter progression-free and overall survival, with a strong time-dependent effect within the first 24 months after diagnosis. The adverse prognostic impact of MYC-R was only evident in patients with a concurrent rearrangement of BCL2 and/or BCL6 and an IG partner (hazard ratio, 2.4; 95% CI, 1.6 to 3.6; P < .001). CONCLUSION: The negative prognostic impact of MYC-R in DLBCL is largely observed in patients with MYC double hit/triple-hit disease in which MYC is translocated to an IG partner, and this effect is restricted to the first 2 years after diagnosis. Our results suggest that diagnostic strategies should be adopted to identify this high-risk cohort, and risk-adjusted therapeutic approaches should be refined further

    A study of Docetaxel-induced effects in MCF-7 cells by means of Raman microspectroscopy

    Get PDF
    Chemotherapies feature a low success rate of about 25%, and therefore, the choice of the most effective cytostatic drug for the individual patient and monitoring the efficiency of an ongoing chemotherapy are important steps towards personalized therapy. Thereby, an objective method able to differentiate between treated and untreated cancer cells would be essential. In this study, we provide molecular insights into Docetaxel-induced effects in MCF-7 cells, as a model system for adenocarcinoma, by means of Raman microspectroscopy combined with powerful chemometric methods. The analysis of the Raman data is divided into two steps. In the first part, the morphology of cell organelles, e.g. the cell nucleus has been visualized by analysing the Raman spectra with k-means cluster analysis and artificial neural networks and compared to the histopathologic gold standard method hematoxylin and eosin staining. This comparison showed that Raman microscopy is capable of displaying the cell morphology; however, this is in contrast to hematoxylin and eosin staining label free and can therefore be applied potentially in vivo. Because Docetaxel is a drug acting within the cell nucleus, Raman spectra originating from the cell nucleus region were further investigated in a next step. Thereby we were able to differentiate treated from untreated MCF-7 cells and to quantify the cell–drug response by utilizing linear discriminant analysis models

    Magnetic resonance imaging (MRI) contrast agents for tumor diagnosis

    Get PDF
    10.1260/2040-2295.4.1.23Journal of Healthcare Engineering4123-4

    Study of e+eppˉe^+e^- \rightarrow p\bar{p} in the vicinity of ψ(3770)\psi(3770)

    Full text link
    Using 2917 pb1\rm{pb}^{-1} of data accumulated at 3.773~GeV\rm{GeV}, 44.5~pb1\rm{pb}^{-1} of data accumulated at 3.65~GeV\rm{GeV} and data accumulated during a ψ(3770)\psi(3770) line-shape scan with the BESIII detector, the reaction e+eppˉe^+e^-\rightarrow p\bar{p} is studied considering a possible interference between resonant and continuum amplitudes. The cross section of e+eψ(3770)ppˉe^+e^-\rightarrow\psi(3770)\rightarrow p\bar{p}, σ(e+eψ(3770)ppˉ)\sigma(e^+e^-\rightarrow\psi(3770)\rightarrow p\bar{p}), is found to have two solutions, determined to be (0.059±0.032±0.0120.059\pm0.032\pm0.012) pb with the phase angle ϕ=(255.8±37.9±4.8)\phi = (255.8\pm37.9\pm4.8)^\circ (<<0.11 pb at the 90% confidence level), or σ(e+eψ(3770)ppˉ)=(2.57±0.12±0.12\sigma(e^+e^-\rightarrow\psi(3770)\rightarrow p\bar{p}) = (2.57\pm0.12\pm0.12) pb with ϕ=(266.9±6.1±0.9)\phi = (266.9\pm6.1\pm0.9)^\circ both of which agree with a destructive interference. Using the obtained cross section of ψ(3770)ppˉ\psi(3770)\rightarrow p\bar{p}, the cross section of ppˉψ(3770)p\bar{p}\rightarrow \psi(3770), which is useful information for the future PANDA experiment, is estimated to be either (9.8±5.79.8\pm5.7) nb (<17.2<17.2 nb at 90% C.L.) or (425.6±42.9)(425.6\pm42.9) nb

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)
    corecore