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ABSTRACT
This review focuses on MRI contrast agents for tumor diagnosis. Several types of low molecular
weight Gd3+-based complexes and dextran-coated superparamagnetic iron oxide (SPIO)
nanoparticles have been used for clinical tumor diagnosis as longitudinal relaxation time (T1) and
transverse relaxation time (T2) MRI contrast agents, respectively. To further improve the
sensitivity of MRI, new types of chelates for T1 MRI contrast agents and combination of low
molecular weight T1 MRI contrast agents with different types of carriers have been investigated.
Different types of materials for forming secure coating layers of SPIO and novel
superparamagnetic particles with higher relaxivity values have been explored. Various types of
ligands were applied to improve the capability to target tumor for both T1 and T2 contrast agents.
Furthermore, MRI contrast agents for detection of tumor metabolism were also pursued.

Keywords: magnetic resonance imaging (MRI), magnetic resonance imaging (MRI) contrast
agent, tumor, metabolism, diagnosis

1. INTRODUCTION
In comparison with other diagnosis techniques such as X-ray computed tomography
(CT), positron-emission tomography (PET), single photon-emission computed
tomography (SPECT) and ultrasound, magnetic resonance imaging (MRI) is non-
invasive and can provide tomographic information of whole animals with a high spatial
resolution and soft tissue contrast [1, 2]. There are many types of MRI techniques,
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including the longitudinal relaxation time (T1)-weighted imaging with a hyper-intense
signal and the transverse relaxation time (T2)-weighted imaging with a hypo-intense
signal. The key challenge in MRI technique is its low diagnosis sensitivity. Currently,
40–50% of MRI scans use contrast agents that contain magnetic metal ions to enhance
the intensity of signal [1, 3]. The contrast agents for T1-weighted MRI (i.e., T1 contrast
agent) usually contain lanthanide or transitional metal ion (Gd3+ or Mn2+) that is
chelated to reduce serious side effects [4–6]. The contrast agents for T2-weighted MRI
(i.e, T2 contrast agent) normally consists of superparamagnetic nanoparticles with
coating layers [6].

Since nuclear magnetic resonance was explored for diagnosis of disease in 1971 [7],
MRI has been well developed for diagnosis of various diseases. For tumor diagnosis,
MRI contrast agents are useful to obtain good contrast for differentiating tumor from
healthy tissues, and indicating tumor malignant status and the treatment efficacy. There
are many seminal reviews on MRI contrast agents, most of which are generally about
MRI contrast agents for diagnosis of various diseases [4–6]. In this review, we focus on
contrast agents for tumor diagnosis based on T1- and T2-weighted MRI. The contrast
agents used in clinical tumor diagnosis are described first, followed by an update of the
progress in developing T1 MRI contrast agents through exploring new chelates and
combining low molecular weight T1 MRI contrast agents with various types of carriers.
The progress in developing T2 MRI contrast agents through forming secure coating
layers for SPIO and preparing new superparamagnetic cores is discussed. The
approaches to improving targeting capability of both T1 and T2 MRI contrast agents via
either passive targeting or active targeting are covered. Also discussed is the research
on developing MRI contrast agents for detection of tumor metabolism.

2. T1 MRI CONTRAST AGENTS
2.1. T1 MRI Contrast Agents for Clinical Tumor Diagnosis
As shown in Figure 1, several types of T1 MRI contrast agents, i.e., Gd-DTPA
(Magnevist®), Gd-EOB-DTPA (Eovist®) and Gd-DTPA-BMA (Omniscan®), have been
employed for clinical tumor diagnosis. Pettersson et al. showed that Gd-DTPA
enhanced only the richly vascularized parts and the surrounding of the soft tissue
tumors in 10–15 minutes after injection [8]. For the detection of mediastinal lymph
nodes, Gd-DTPA-enhanced MRI could provide a diagnosis with a sensitivity of 100%,
an accuracy of 97% and a specificity of 91% as compared to 62%, 74% and 100% for
non-enhanced MRI, respectively [9]. However, Gd-DTPA might not be helpful in
screening other types of cancer. Hawnaur et al. demonstrated that it is complicated to
identify tumor in bladder using Gd-DTPA-enhanced MRI due to the excretion of Gd-
DTPA in urine and changes in bladder volume, which could affect the interpretation of
results; it was also not reliable in determining the effectiveness of the radiotherapy due
to structural changes in the bladder after radiotherapy [10].

Gd-EOB-DTPA is suitable for liver tumor diagnosis due to its good liver-specificity
[11]. Vander et al. reported that Gd-EOB-DTPA was taken preferably by an excised and
perfused rat liver than Gd-DTPA [12]. Shimada et al. showed that Gd-EOB-DTPA-
enhanced MRI was more accurate and sensitive in detecting small hepatic metastases
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of a diameter smaller than 2 cm than diffusion-weighted MRI [13]. Gd-EOB-DTPA
induced a much better tumor enhancement of solid hepatocellular carcinoma lesion of
rats than Gd-DTPA and Mn-DPDP. The Gd-EOB-DTPA almost disappeared in 24 hours
while a high concentration of Mn-DPDP still remained in the liver [14].

Recently, US FDA approved clinical use of MS-325 in magnetic resonance
angiography (MRA). MS-325 can form complex with endogenous serum albumin via
hydrophobic interaction without covalent linkages [15–18], and provide r1 of a value 10
times higher and a longer vascular residence time than non-protein-binding contrast
agents. The reversible bonding between albumin and MS-325 could facilitate the
excretion of MS-325 and avoided poor clearance. MS-325 was also used in the
assessment of capillary permeability in rat breast tumor [19].

Although several types of T1 MRI contrast agents have been employed for clinical
tumor diagnosis, their sensitivities still need to be improved in terms of higher r1 value
and/or capability to target tumor.

2.2. New T1 MRI Contrast Agents for Tumor Diagnosis Under Investigation
Two approaches are discussed below regarding development of T1 MRI contrast agents
for tumor diagnosis with improved sensitivity, i.e., low molecular weight Gd3+ complex
composed of suitable chelates and targeting ligands, and low molecular weight T1 MRI
contrast agents combined with various carriers.

2.2.1. Low Molecular Weight T1 MRI Contrast Agents
One of the most promising chelates for preparing T1 MRI contrast agents for tumor
diagnosis is porphyrin-based compounds with possible multi-functionality. Porphyrin
could function as a ligand and was potentially applicable for cancer photodynamic
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Figure 1. Typical low molecular weight T1 MRI contrast agents used in clinical
tumor diagnosis.



therapy [20]. As the ring of porphyrin is too small to accommodate Gd3+ ions securely
in vivo [21], porphyrin-like synthetic macrocyle, texaphyrin, was explored as a chelate
of Gd3+ instead, which could provide a longer MRI contrast enhancement of the V2
carcinoma than Gd-DTPA [22]. Another type of contrast agent obtained from
texaphyrin, Motexafin Gd, could provide MRI contrast enhancement of brain tumor and
killed the cancer cells via redox cycling simultaneously [23, 24].

Enhanced targeting of MRI contrast agents to tumor sites can improve the sensitivity
significantly. Various types of ligands have been explored to improve the tumor
specificity of low molecular weight T1 MRI contrast agents. Arginine-glycine-aspartic
acid (RGD) peptide is well known for its high and specific affinity for αvβ3-integrins
which are over-expressed in endothelial cells during angiogenesis of tumors. Park et al.
reported a liver specific contrast agent, cyclic RGD conjugated Gd-DOTA (Gd-DOTA-
RGD) [25]. Gd-DOTA-RGD could produce a high signal intensity of the tumor, but
almost lost this enhancement when the αvβ3-integrins were blocked [25].
Deoxyglucosamine conjugated Gd-DTPA (Gd-DTPA-DG) was developed to target the
hypermetabolic cancer cells because deoxyglucosamine was rapidly taken up by tumor
due to the over-expressed glucose transporters [26]. Gd-DTPA-DG could provide a
higher MRI enhancement of A549 tumor than Gd-DTPA and a higher retention rate
because the metabolism pathway was blocked by the deoxyglucosamine analog [26].
MRI contrast agents were also developed to target the overexpression of estrogen and
estrogen related progesterone receptors in breast and ovarian cancers. Sukerkar et al.
conjugated progesterone to Gd-DO3A to improve the cellular uptake by around 3 times
higher in two breast cancer cell lines and provided a higher contrast enhancement of the
xenograft tumors in nude mice [27]. Pais et al. developed another type of breast cancer
specific MRI contrast agent, EPTA-Gd, by conjugating 17b-estradiol to pyridinetetra-
acetate-Gd (PTA-Gd) for differentiating estrogen receptors-transfected PR(+) from
wild-type PR(–) human breast cancer cells [28].

2.2.2. Low Molecular Weight T1 MRI Contrast Agents Combined with Carriers
Combination of low molecular weight T1 MRI contrast agents with carriers including
polymers and nanomaterials can produce contrast agents with a high payload of
chelated Gd3+, normally a higher r1 value, and enhanced tumor targeting capability. One
factor contributing to the enhanced targeting capability is the enhanced permeability
and retention (EPR) effect owing to accumulation of complexes of carriers and low
molecular weight T1 contrast agents, which are larger, in tumors with loosely vascular
structures [29]. However, the possible release of free Gd3+ was observed from some
liposome loaded with low molecular weight T1 MRI contrast agent, which showed a
long retention time [30]. Therefore, the safety issues of the complex of carriers and low
molecular weight T1 contrast agent should be taken into account as well.

2.2.2.1. Water-Soluble Polymer as Carriers
Many types of water soluble polymers, including linear polymers, dendrimers, and
proteins, have been explored for carrying low molecular weight T1 MRI contrast agents.
Generally, such conjugation limits the rotation and motion of the chelated Gd3+ leading
to a higher r1 value [31–34].
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Gd-DTPA conjugated polylysine was able to accumulate in grafted tumor in rat
models and therefore provided an enhanced imaging for several days [35]. Gd-DTPA
conjugated polyaspartamide demonstrated a preferential uptake and therefore an
enhanced MRI contrast in hepatoma in mouse models [36]. A high molecular weight
polyglutamic acid based MRI contrast agent exhibited an improved tumor accumulation
[37]. Low molecular weight T1 MRI contrast agents were also conjugated with
polysaccharides including dextran, starch, inulin and oligoglucoamines. Conjugates of
Gd-DTPA with dextran or oligopolyglucoamines were investigated for delineation of
tumor in rabbits [38], while Gd-DO3A conjugated carboxymethyl hydroxyethyl starch
showed the ability to image leaky vasculature of tumor [39]. Galatose units targeting
the lectin asialoglycoprotein receptor (ASGPR) expressed on liver hepatocytes [40]
were explored for imaging of hepatocyte carcinoma through combination with either
DOTA [41] or DTPA [40, 42].

In comparison with linear polymers, dendrimers have well-defined, rigid dendritic
structures together with abundant terminal groups. The conjugation to the terminal
groups produces dense peripheral layers of low molecular weight T1 MRI contrast
agents which can induce high r1 values. For example, the r1 of G6-(C-DOTA-Gd)115
shown in Figure 2, prepared using a preligation technique, could reach 89.1 mM−1s−1 as
compared to 4.2 mM−1s−1 for DOTA-Gd [31]. It was also found that G6 or G7
dendrimers provided the highest r1 values, while protonation of amines [43, 44] and
formation of adducts [45, 46] could further improve the values by forming more rigid
and open structures with a lower internal motion. Therefore, a higher level of contrast
enhancement of tumors could be obtained using a lower amount of PAMAM [47–50]
and polylysine dendrimer [51] conjugated with low molecular weight T1 MRI contrast
agents. PEGylated and non-PEGylated Gd labeled dendrimers had a r1 value higher than
20 mM−1s−1 together with a longer retention time [52–54]. Targeting ligands, e.g.,
OST7 [55], murine monoclonal IgG1, folic acid which targets folate receptor (hFR)
[56–59], and cyclic RGD as an angiogenesis marker [60], were applied to improve
active targeting of the conjugates of PAMAM and low molecular weight T1 MRI
contrast agents. Also, dendrimer nanoclusters (DNCs) with folic acid as ligand were
developed with a high payload of low molecular weight T1 MRI contrast agents [61]. In
order to improve biocompatibility, biodegradable esteramide dendrimer was combined
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with low molecular weight T1 MRI contrast agents [32] which showed a low toxicity
similar to Gd-DTPA [62, 63].

Low molecular weight T1 MRI contrast agents were also combined with proteins
such as albumin [64, 65], IgG and fibrinogen [66] and could increase r1 by 3 folds.
Albumin-Gd-DTPA was employed to monitor the histological profile of tumor and
abnormal capillary permeability in cancer models [67–71]. The changes in capillary
permeability could estimate angiogenic activity and the effects of pharmacological
stress [72], radiation [73] and toxins [74]. The combination with certain types of
proteins could improve the tumor targeting capability. Through the interaction between
biotin and avidin, Gd3+-labeled avidin was used to image the dynamic response of
tumors to etoposide treatment in mice [75] and breast cancer [76]. Antibody was also
explored to deliver MRI contrast agents to tumor specifically. It was shown that
antibody labeled Gd-DTPA could visualize melanoma [77, 78], human rectal carcinoma
[79] and human gastrointestinal cancer [80, 81]. However, many results have shown
that conjugation could destroy the immunereactivity of antibodies; therefore, the
targeting capability of these MRI contrast agents was limited [82, 83].

2.2.2.2. Nanomaterials as Carriers
With the advancement in nanotechnology, many types of nanomaterials have been
developed, such as polymer micelles and vesicles, liposomes and lipid particles, viral
particles, carbon nanotubes and fullerenes, gold nanoparticles, and silica particles; most
of them have been explored as carriers of Gd3+ as MRI contrast agents for tumor
diagnosis.

Ratzinger et al. reported Gd-DTPA and Gd-DOTA labeled poly(lactic-co-glycolic
acid) (PLGA) nanoparticles with an r1 of 17.5 mM−1s−1 [84]. In another work, Gd-
DOTA was conjugated to poly(ethylene glycol) (PEG)-polylysine which could form
micelles [85]. Micelles containing low molecular weight T1 contrast agents could
also be obtained by mixing Gd-DTPA conjugated PEG-b-poly(aspartic acid) with
polyallylamine/protamine or Gd-DOTA conjugated PEG-polylysine with
poly(methacrylic acid) [86, 87] via forming polyelectrolyte complex. The r1 of the
polyelectrolytes micelles containing Gd-DTPA was reduced to 2.1 and 3.6 mM−1s−1 but
was increased to 10 and 11 mM−1s−1, respectively, once the micelles were dissociated
[86, 87]. All these micelles containing low molecular weight T1 contrast agents showed
a preferential accumulation in tumors [46, 85]. Gd-DTPA loaded into PEG-b-
poly(glutamic acid)/bis(nitrato) (trans-l-1, 2-diaminocyclohexane) platinum(II) micelle
complex resulted in an increase in r1 value by 24 times [88]. Theranostic systems such
as Gd-DOTA conjugated to unimolecular micelles which composed of fourth
generation hyperbranched polyester (Boltorn H40) cores, hydrophobic ε-caprolactone
(PCL) inner layers and hydrophilic poly(oligo(ethylene glycol) shells coated with folic
acid (FA). Paclitaxel, an anti-cancer drug, was encapsulated in the hydrophobic PCL
layers with a drug loading capacity of 6.67%. That system showed an r1 value of 18.14
mM−1s−1 and a long retention time of up to 20 hours [89]. Other theranostic systems
with higher r1 values have also been reported with FA as targeting moiety and
doxorubicin as drug [90–92].
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Bui et al. incorporated Gd-DTPA into PEG-coated phospholipid nanoparticles
(LNP), which showed a very high r1 value of 134.8 mM−1s−1; the Gd-DTPA loaded LNP
was excreted from the body through the biliary system instead of the renal system due
to its lipid nature [93]. Low molecular weight T1 MRI contrast agents were loaded into
liposomes in several ways as shown in Figure 3 [6, 94]. For example, ensomes with
reduced r1 values and memsomes with higher r1 values were formed when low
molecular weight T1 MRI contrast agents were trapped in the inner parts and the
membranes of liposomes, respectively. These systems demonstrated an enhanced
passive targeting of tumor such as liver tumor [95]. For active targeting, RGD was
employed to label PEGylated liposomes encapsulated with Gd-DTPA and provided a
higher MRI contrast enhancement of human lung cancer in xenograft mice [96].
Transferrin, which is over-expressed in many cancerous cells, was used to label
liposomes loaded with Gd-DTPA to image the detailed pathway of the liposomes in the
human prostate cancer cells inoculated in nude mice [97]. These liposomes entered the
peripheral region of the tumor reflected by higher signal intensity observed in 10
minutes after injection of the contrast agent, and then entered the cells via endocytosis
where Gd-DTPA was released. Finally liposomes and the released Gd-DTPA were
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pumped out by the cancer cells and were then accumulated in the necrotic area due to
the lack of washout mechanism indicated by the significant increase in signal intensity
in 60 minutes after injection [97]. Moreover MRI based on chemical exchange
saturation transfer (CEST) has a high potential to provide better imaging [6, 94, 98].
MRI contrast agents for this technology can be obtained by loading low molecular
weight T1 MRI contrast agents into non-spherical liposomes to form LipoCEST agents
as shown in Figure 3E.

Nanosized silica has been explored for loading low molecular weight T1 MRI contrast
agents. Gd-DTPA was conjugated to PEG functionalized mesoporous silica nanospheres
(MSN) with anisamide as a targeting ligand via cleavable disulfide linkage, and provided
an r1 value up to 25.7 mM−1s−1 [99]. Such nanospheres could be taken up by AsPC-1
pancreatic cancer cells, and the in vivo results indicated that Gd-DTPA was cut from
MSN in 15 minutes after injection, reflected by a strong imaging enhancement of the
bladder, due to rapid reduction of the disulfide linkage by plasma thiols [99]. The
biocompatibility of silica nanoparticles was investigated using Gd2O3 doped mesoporous
silica nanocomposite, which indicated that silica particles showed a low toxicity in cell
lines and no potential immunotoxicity [100]. Silica nanoparticles coated with Gd2(CO3)3

were also prepared and exhibited a low r1 value of 1.6 mM−1s−1 [101].
Low molecular weight T1 MRI contrast agents were also conjugated with other types

of nanomateirals. Conjugation with viral capsids could significantly improve r1 values
[102]. Anchoring low molecular weight T1 MRI contrast agent onto Au nanoparticles
could improve r1 value by several times [103, 104] and benefit multimodal cell imaging
[104]. When Gd was loaded into fullerenes, gadofullerene formed with either PEG
shells or succinic acid shells provided r1 50 to 60 times higher than Gd-DTPA, and the
gadofullerene was tested for imaging of brain tumor in rat models [105, 106].

3. T2 MRI CONTRAST AGENTS
The majority of T2 MRI contrast agents contain superparamagnetic iron oxide (SPIO)
nanoparticles which are composed of either maghemite (γ-Fe2O3) or magnetite
(Fe3O4) phases prepared by various methods including co-precipitation and
hydrothermal procedures. SPIO can provide a high proton relaxivity with a typical r2

value of 100 mM−1s−1 and r1 value of 30 mM−1s−1, together with a prolonged contrast
enhancement [107–109]. Pure SPIO possesses good biocompatibility due to low
cytotoxicity and biodegradability with degraded SPIO entering the iron reservoirs
such as hemoglobin in red blood cells [110, 111]. However, a suitable coating layer
is necessary to avoid formation of aggregates and provide a long circulation in the
blood stream by avoiding uptake by the reticuloendothelial system (RES) and
excretion through the renal filtration [112–114].

3.1. T2 MRI Contrast Agents for Clinical Tumor Diagnosis
Dextran-coated SPIO, e.g., Ferumoxide® and Ferrixan/Ferucarbotran®, have been tested
for clinical tumor dignosis [6]. Ferumoxide® nanoparticles with diameters of 80–150 nm
are used for MR imaging of liver and spleen, Ferrixan/Ferucarbotran with a diameter of
62 nm are used for liver, and both contain SPIO of a diameter of 4.2 nm. These contrast
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agents are prepared via copreciptation method in the presence of dextran. The dextran
coating layers are formed via multiple cooperative low-energy interactions between
dextran and SPIO including van der Waals force, electrostatic and hydrophobic
interactions [115]. Pharmacokinetic and toxicity studies have revealed that the dextran-
based nanomaterials are non-toxic and biodegradable with extended vascular retention
times [116].

T2 MRI contrast agents have been demonstrated to be useful for imaging liver tumors
by providing a strong contrast between healthy and cancerous tissues. This is due to a
preferential uptake of contrast agents by reticuloendothelial cells such as Kuppfer cells
which are absent or in low concentration in tumors [117, 118]. Clinical studies have
shown that Ferumoxide® could detect hepatic tumors with a high accuracy as the
nanoparticles accumulate exclusively in healthy liver tissues [119]. Ferumoxide®

tended to exhibit a two-phase blood clearance with a half-life of the first phase and the
second phase ranging from 4.4–22.2 minutes and 79–309 minutes, respectively, after
intravenous injection in patients with liver metastases [120]. Reimer et al. have shown
that SPIO enhanced T2-weighted MRI was more accurate in the detection of focal
hepatic lesions than non-enhanced T1- and T2-weighted MRI and contrast-enhanced
spiral computed tomography (CT) [121]. Ferumoxide® has also been used for detecting
focal splenic tumors through observing a significant increase in signal intensity of
spleen but not the tumor [122]. This allow a more accurate identification of lesions than
other diagnostic methods such as sonography, contrast-enhanced CT, and unenhanced
MRI. The clinical investigation was also extended to lymph nodes, and smaller SPIO-
based contrast agents were found to accumulate in lymph nodes [123, 124].
Specifically, smaller SPIO-based contrast agents with a diameter of ca. 30 nm were
extravasated from the vasculature to the interstitial space and were then transported to
the lymph nodes via the lymphatic vessels. Lymph nodes containing cancerous tissues
lack the necessary macrophages to phagocytize SPIO; as a result, the accumulation of
SPIO in healthy tissues shortened T2 signal, and significantly increased the positive
predictive values and accuracy of node metastases diagnosis [125].

The drawback of these T2 MRI contrast agents used in clinical tumor diganosis lies
in that the non-crosslinked dextran coating layer can be removed by the surrounding
medium. However, there are safety concerns about the cross-linking agents used in
forming the cross-linked dextran layer coated on SPIO (CLIO) via reaction with
epichlorohydrin [126], although CLIO has been applied in clinical studies of prostate
cancers [117, 127] and other cancers [128–130].

3.2. New T2 MRI Contrast Agents Under Investigation
In order to develop better T2 MRI contrast agents for tumor diagnosis,
superparamagnetic nanoparticles with a higher relaxivity, secure coating layers of SPIO
and an improved tumor targeting capability have been pursued.

3.2.1. T2 MRI Contrast Agents with New Superparamagnetic Nanoparticles
The magnetic properties of superparamagnetic particles are affected by size, shape, and
defect concentration. There are many different methods to synthesize
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superparamagnetic particles [131]. The most common fabrication method is the
Massart’s procedure whereby base is added to an aqueous solution of ferrous (Fe2+) and
ferric (Fe3+) ions with a 1:2 stoichiometric ratio under an oxygen free environment
[132]. However, SPIO produced in this process has a varied size and a low saturation
magnetization value of 30–50 emu/g due to impurities and crystal defects [133]. In
contrast, thermal decomposition of organometallic reagents could yield SPIO with a
well-defined size and a high saturation magnetization value > 70 emu/g [134]. In order
to further improve the magnetic performance, metal-doped SPIO nanoparticles as
depicted in Figure 4 were developed, and the MnFe2O4 produced had a low cytotoxicity
and exhibited a very high r2 value of 350 mM−1s−1 [135]. However, most of these
particles were prepared in organic solvents, and transformation into aqueous solution
was necessary for further coating. In addition, SPIO nanoparticles prepared by
precipitation in alkaline solution are more suitable for in vivo purposes, and the SPIO
nanoparticles prepared by other procedures are limited to in vitro applications [136].

3.2.2. T2 MRI Contrast Agents with Secure Coating Layers
Beyond dextran, other types of polymers [137] including PEG [138–140] and PEG
containing copolymers [141–143] were explored as coating layers for SPIO. PEG
coating layers on SPIO particles could be achieved via forming cross-linked layers from
siliane [144], anchoring dopamine species [145], and encapsulating SPIO nanoparticles
in micelles [146]. Silica-coated SPIO nanoparticles were also developed as T2 MRI
contrast agents [147]. Silica layer, which could be further functionalized with PEG,
could be formed directly on SPIO nanoparticles [148] or through a gut layer [149].
Recently, mesoporous silica nanoparticles were loaded with SPIO as MRI contrast
agent [150].

3.2.3. T2 MRI Contrast Agents with Ligands
SPIO based contrast agents without targeting capability is only useful for the diagnosis
of tumors in RES organs where large quantities of resident macrophages exist. For the
detection of cancerous tissues in other parts of the body, it is necessary to integrate
ligands for active targeting. Many type of ligands, such as small molecules, proteins,
and oligonucleotides, have been conjugated to dextran layers coated on SPIO through
conventional chemical methods, click chemistry methods and cycloaddition methods as
depicted in Figure 5 [151–153]. Among 146 different types of small molecules with
varied solubility in aqueous solution and chemical diversity, glycine-conjugated CLIO
was identified to be capable of targeting active macrophages associated with tumors
with proangiogenic and immunosuppressive properties [154], but not resting
macrophages [155]. On the other hand, CLIO conjugated with 3,3’,4,4’-
benzophenontetracarboxylic dianhydride was able to target resting macrophages [156].

Anti-vascular cell adhesion molecules-1 (VCAM-1) antibodies [157], VHS peptide
[158] and VHPKQHR peptide [159, 160] were explored to target T2 MRI contrast
agents to cells with VCAM expression which is related to tumor angiogenesis. SPION
coated with dextran conjugated with folate showed a rapid and efficient uptake via
receptor-mediated endocytosis by both human nasopharyngeal epidermal carcinoma
cells (KB cells) overexpressing folate receptors and subcutaneous tumor (xenografts
grown from implanted KB cells) in mouse models [161, 162]. Transferrin-conjugated
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dextran-coated SPIO was tested to target tumors with a higher level of transferrin
receptor expression [163]. Furthermore, RGD was also explored to enhance the targeting
of SPIO to tumors [164]. It was shown that RGD-modified SPIO nanoparticles could
significantly enhance the sensitivity of MRI for early stage tumor detection [165].

4. MRI CONTRAST AGENTS RESPONSIVE TO TUMOR METABOLISM
It is very important to develop diagnosis techniques to reflect tumor metabolism, 
e.g., apoptosis, glycolysis, pH, redox, and hypoxia, which are related to the malignant
status and therapeutic responses of cancers. It is well-known that particular
metabolites are produced from tumor with a certain metabolism; therefore, magnetic
resonance spectroscopy (MRS), which can identify the particular metabolites, is
powerful for monitoring tumor metabolism [1, 166]. When MRI is applied to detect
tumor metabolism, it is a prerequisite to identify the relationships between signal
intensity and particular tumor metabolites or biomarkers. However, so far there are
very few reports in this area.

By exploring interaction with the phosphatidylserine on the surface of apoptotic
cells, C2A domain of synaptotagmin I loaded with SPIO [167] and Gd-DTPA [168]
were applied for image apoptosis of tumor cells. GdTODA-4AmP5−, whose proton
exchange rate changes with pH, was developed and explored to detect pH of tumor
[169]. Iwaki et al. also developed a pH-responsive Gd-based contrast agent,
4NO22MeOSAGd. The relaxivity of 4NO22MeOSAGd was increased by 1.8 times after
it was reduced to 4NH22MeOSAGd via an enzymatic reaction [170].

5. CONCLUSION
Both T1 and T2 MRI contrast agents have been employed to improve the accuracy,
sensitivity and specificity of tumor diagnosis with MRI. Many efforts are still needed
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to overcome the hurdles related to the low sensitivity and specificity of current MRI
contrast agents.

Novel chelating approaches can produce T1 MRI contrast agents with much high r1

values, such as forming complexes of Gd3+ with fullerenes and some proteins, but
extensive examinations of their stability, retention behaviors and safety are still needed.
The combination of low molecular weight T1 MRI contrast agents with carriers can
yield a higher sensitivity and specificity for MRI. However, suitable carriers, including
hyperbranched polymers, dendrimers and nanomaterials, with good biocompatibility
and safety are still desired.

T2 MRI contrast agents for clinical applications use biocompatible SPIO prepared by
coprecipitation method, but it is still a challenge to produce biocompatible
superparamagnetic nanoparticles with a well-defined size, a high saturation
magnetization value, and good batch reproducibility. Meanwhile, it is still crucial to
develop secure coating layer for superparamagnetic nanoparticles together with
improved targeting capability.

For detection of tumor metabolism using MRI technique, more efforts in developing
MRI contrast agents responsive to particular metabolites or biomarkers are needed.
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