15 research outputs found

    Evidence that the negative BOLD response is neuronal in origin: a simultaneous EEG–BOLD–CBF study in humans

    Get PDF
    Unambiguous interpretation of changes in the BOLD signal is challenging because of the complex neurovascular coupling that translates changes in neuronal activity into the subsequent haemodynamic response. In particular, the neurophysiological origin of the negative BOLD response (NBR) remains incompletely understood. Here, we simultaneously recorded BOLD, EEG and cerebral blood flow (CBF) responses to 10 s blocks of unilateral median nerve stimulation (MNS) in order to interrogate the NBR. Both negative BOLD and negative CBF responses to MNS were observed in the same region of the ipsilateral primary sensorimotor cortex (S1/M1) and calculations showed that MNS induced a decrease in the cerebral metabolic rate of oxygen consumption (CMRO2) in this NBR region. The ∆CMRO2/∆CBF coupling ratio (n) was found to be significantly larger in this ipsilateral S1/M1 region (n = 0.91 ± 0.04, M = 10.45%) than in the contralateral S1/M1 (n = 0.65 ± 0.03, M = 10.45%) region that exhibited a positive BOLD response (PBR) and positive CBF response, and a consequent increase in CMRO2 during MNS. The fMRI response amplitude in ipsilateral S1/M1 was negatively correlated with both the power of the 8–13 Hz EEG mu oscillation and somatosensory evoked potential amplitude. Blocks in which the largest magnitude of negative BOLD and CBF responses occurred therefore showed greatest mu power, an electrophysiological index of cortical inhibition, and largest somatosensory evoked potentials. Taken together, our results suggest that a neuronal mechanism underlies the NBR, but that the NBR may originate from a different neurovascular coupling mechanism to the PBR, suggesting that caution should be taken in assuming the NBR simply represents the neurophysiological inverse of the PBR

    Global signal modulation of single-trial fMRI response variability: effect on positive vs negative BOLD response relationship

    Get PDF
    In functional magnetic resonance imaging (fMRI), the relationship between positive BOLD responses (PBRs) and negative BOLD responses (NBRs) to stimulation is potentially informative about the balance of excitatory and inhibitory brain responses in sensory cortex. In this study, we performed three separate experiments delivering visual, motor or somatosensory stimulation unilaterally, to one side of the sensory field, to induce PBR and NBR in opposite brain hemispheres. We then assessed the relationship between the evoked amplitudes of contralateral PBR and ipsilateral NBR at the level of both single-trial and average responses. We measure single-trial PBR and NBR peak amplitudes from individual time-courses, and show that they were positively correlated in all experiments. In contrast, in the average response across trials the absolute magnitudes of both PBR and NBR increased with increasing stimulus intensity, resulting in a negative correlation between mean response amplitudes. Subsequent analysis showed that the amplitude of single-trial PBR was positively correlated with the BOLD response across all grey-matter voxels and was not specifically related to the ipsilateral sensory cortical response. We demonstrate that the global component of this single-trial response modulation could be fully explained by voxel-wise vascular reactivity, the BOLD signal standard deviation measured in a separate resting-state scan (resting state fluctuation amplitude, RSFA). However, bilateral positive correlation between PBR and NBR regions remained. We further report that modulations in the global brain fMRI signal cannot fully account for this positive PBR-NBR coupling and conclude that the local sensory network response reflects a combination of superimposed vascular and neuronal signals. More detailed quantification of physiological and noise contributions to the BOLD signal is required to fully understand the trial-by-trial PBR and NBR relationship compared with that of average responses

    The kinetics of calcium binding to fura-2 and indo-1

    Get PDF
    AbstractThe kinetics of Ca2+ dissociation from fura-2 and indo-1 were measured using a stopped-flow spectrofluorimeter. The dissociation rate constants were 84 s−1 and 130 s−1, respectively, in 0.1 M KCl at 20°C. The rate constants were insensitive to pH over the range 7.0 to 8.0. The second order association rate constants were estimated indirectly to be in the region of 5 × 108 M−1·s−1 and thus approach the diffusion-controlled limit. The results demonstrate that these new generation indicators are well-suited to measure rapid changes in concentration of intracellular Ca2+

    Intrinsic variability in the human response to pain is assembled from multiple, dynamic brain processes

    Get PDF
    The stimulus-evoked response is the principle measure used to elucidate the timing and spatial location of human brain activity. Brain and behavioural responses to pain are influenced by multiple intrinsic and extrinsic factors and display considerable, natural trial-by-trial variability. However, because the neuronal sources of this variability are poorly understood the functional information it contains is under-exploited for understanding the relationship between brain function and behaviour. We recorded simultaneous EEG-fMRI during rest and noxious thermal stimulation to characterise the relationship between natural fluctuations in behavioural pain-ratings, the spatiotemporal dynamics of brain network responses and intrinsic connectivity. We demonstrate that fMRI response variability in the pain network is: dependent upon its resting-state functional connectivity; modulated by behaviour; and correlated with EEG evoked-potential amplitude. The pre-stimulus default-mode network (DMN) fMRI signal predicts the subsequent magnitude of pain ratings, evoked-potentials and pain network BOLD responses. Additionally, the power of the ongoing EEG alpha oscillation, an index of cortical excitability, modulates the DMN fMRI response to pain. The complex interaction between alpha-power, DMN activity and both the behavioural report of pain and the brain's response to pain demonstrates the neurobiological significance of trial-by-trial variability. Furthermore, we show that multiple, interconnected factors contribute to both the brain's response to stimulation and the psychophysiological emergence of the subjective experience of pain. © 2013 Elsevier Inc
    corecore