44 research outputs found

    Epiphyll specialization for leaf and forest successional stages in a tropical lowland rainforest

    Get PDF
    Questions: The importance of tropical rainforest gap dynamics in biodiversity maintenance is not fully understood, in particular for taxa other than trees and lianas. We used epiphylls on rainforest leaves to study the importance of leaf- and forest-scale succession in determining biodiversity patterns by characterizing community change with leaf age in gaps and closed-forest habitats. We asked: 1. Do epiphylls show specialization for leaf and forest successional stages? 2. Can early and late-successional epiphyllous species be recognized at these two scales? 3. How do epiphyll presence, species richness, and cover change with leaf and forest successional stages? Location: Barro Colorado Island, Panama. Methods: Data were collected from 420 leaves, in three age groups and at two heights on shrubs in gaps and closed forest. We calculated turnover and nestedness components of dissimilarity to evaluate the importance of species replacement or accumulation during leaf and forest succession. Using generalized linear mixed models we determined what factors explain epiphyll species occurrence, richness and cover. Results: Closed forest contained more liverwort and lichen specialist species than gaps. Specialist species were identified for older leaves only. Dissimilarity between leaves within age groups was dominated by turnover within and between forest successional stages. Dissimilarity between leaf age groups, at the site level, was dominated by nestedness, i.e. species accumulation. Both in forest and gaps, epiphyll presence and cover increased with leaf age for all taxa except fungi, while species richness increased only for lichens. Conclusions: Early and late forest successional stages both contribute to epiphyll species richness by harboring specialized species. Among leaf successional stages, young leaves contain a mere subset of the species found on older leaves. Epiphyll communities do not follow classic succession, in the sense of changes being driven by species replacement, but are characterized by species accumulation through time

    Exploring environmental and physiological drivers of the annual carbon budget of biocrusts from various climatic zones with a mechanistic data-driven model

    Get PDF
    Biocrusts are a worldwide phenomenon, contributing substantially to ecosystem functioning. Their growth and survival depend on multiple environmental factors, including climatic ones, and the relations of these factors to physiological processes. Responses of biocrusts to individual environmental factors have been examined in a large number of field and laboratory experiments. These observational data, however, have rarely been assembled into a comprehensive, consistent framework that allows quantitative exploration of the roles of multiple environmental factors and physiological properties for the performance of biocrusts, in particular across climatic regions. Here we used a data-driven mechanistic modelling framework to simulate the carbon balance of biocrusts, a key measure of their growth and survival. We thereby assessed the relative importance of physiological and environmental factors for the carbon balance at six study sites that differ in climatic conditions. Moreover, we examined the role of seasonal acclimation of physiological properties using our framework, since the effects of this process on the carbon balance of biocrusts are poorly constrained so far. We found substantial effects of air temperature, CO2 concentration, and physiological parameters that are related to respiration on biocrust carbon balance, which differ, however, in their patterns across regions. The ambient CO2 concentration is the most important factor for biocrusts from drylands, while air temperature has the strongest impact at alpine and temperate sites. Metabolic respiration cost plays a more important role than optimum temperature for gross photosynthesis at the alpine site; this is not the case, however, in drylands and temperate regions. Moreover, we estimated a small annual carbon gain of 1.5 g m−2 yr−1 by lichen-dominated biocrust and 1.9 g m−2 yr−1 by moss-dominated biocrust at a dryland site, while the biocrusts lost a large amount of carbon at some of the temperate sites (e.g. −92.1 for lichen-dominated and −74.7 g m−2 yr−1 for moss-dominated biocrust). These strongly negative values contradict the observed survival of the organisms at the sites and may be caused by the uncertainty in environmental conditions and physiological parameters, which we assessed in a sensitivity analysis. Another potential explanation for this result may be the lack of acclimation in the modelling approach, since the carbon balance can increase substantially when testing for seasonally varying parameters in the sensitivity analysis. We conclude that the uncertainties in air temperature, CO2 concentration, respiration-related physiological parameters, and the absence of seasonal acclimation in the model for humid temperate and alpine regions may be a relevant source of error and should be taken into account in future approaches that aim at estimating the long-term biocrust carbon balance based on ecophysiological data.</p

    Elevational Shifts in the Topographic Position of Polylepis Forest Stands in the Andes of Southern Peru

    Get PDF
     The patchy distribution of high-Andean treeline forests has provoked discussion aboutthe relative importance of anthropogenic and climatic causes of this pattern, both of whichvary with topography. We aimed to understand the topographic controls on the distribution ofPolylepis subsericans  treeline forests in the Andes of southern Peru, and the changes in these controlsalong an elevational gradient. We mapped Polylepis  forests in the Cordillera Urubamba, Cusco,using high-resolution aerial images and related forest cover to topographic variables extracted from adigital terrain model (30-m resolution). The variables were selected based on their expected biologicalrelevance for tree growth at high elevations. We constructed logistic regression models of forestcover, separately for each of five 100-m elevational belts. To deal with spatial autocorrelation, modelswere based on randomized 10% subsampling of the data with 1000 repetitions. The results suggest aconsistent shift in topographic preference with elevation, with forests at lower elevations showinga preference for topographically protected sites near rivers and forests at higher elevations beingincreasingly restricted to north-facing and well-drained sites. Our study offers the first indication ofthe ability of Andean treeline forests to benefit from the topographic heterogeneity of the high-Andes.Providing that dispersal and establishment are possible, local relocation between microsites could help these forests to persist regionally in spite of changing climatic conditions.</p

    A global framework for linking alpine-treeline ecotone patterns to underlying processes

    Get PDF
    Globally, treeline ecotones vary from abrupt lines to extended zones of increasingly small, stunted and/or dispersed trees. These spatial patterns contain information about the processes that control treeline dynamics. Describing these patterns consistently along ecologically meaningful dimensions is needed for generalizing hypotheses and knowledge about controlling processes and expected treeline shifts globally. However, existing spatial categorizations of treelines are very loosely defined, leading to ambiguities in their use and interpretation. To help better understand treeline-forming processes, we present a new framework for describing alpine treeline ecotones, focusing on hillside-scale patterns, using pattern dimensions with distinct indicative values: 1) the spatial pattern in the x-y plane: a) decline in tree cover, and b) change in the level of clustering. Variation along these dimensions results in more or less 'discrete' or 'diffuse' treelines with or without islands. These patterns mainly indicate demographic processes: establishment and mortality. 2) Changes in tree stature: a) decline in tree height, and b) change in tree shape. Variation along these dimensions results in more or less 'abrupt' or 'gradual' treelines with or without the formation of environmental krummholz. These patterns mainly indicate growth and dieback processes.Additionally, tree population structure can help distinguish alternative hypotheses about pattern formation, while analysing the functional composition of the ecotonal vegetation is essential to understand community-level processes, controlled by species-specific demographic processes.Our graphical representation of this framework can be used to place any treeline pattern in the proposed multi-dimensional space to guide hypotheses on underlying processes and associated dynamics. To quantify the dimensions and facilitate comparative research, we advocate a joint effort in gathering and analysing spatial patterns from treelines globally. The improved recognition of treeline patterns should allow more effective comparative research and monitoring and advance our understanding of treeline-forming processes and vegetation dynamics in response to climate warming

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km² resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-km² pixels (summarized from 8500 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world\u27s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications
    corecore