43 research outputs found

    Metal uptake and distribution in the zebrafish (Danio rerio) embryo: differences between nanoparticles and metal ions

    Get PDF
    Quantitative data on nanoparticle and cation uptake are compared in a compartment-specific way and distinct differences between metals were identified

    Metal transfer to sediments, invertebrates and fish following waterborne exposure to silver nitrate or silver sulfide nanoparticles in an indoor stream mesocosm

    Get PDF
    Engineered nanomaterials; Silver uptake; TroutNanomaterials dissenyats; Captació de plata; TruitaNanomateriales de ingeniería; Absorción de plata; TruchaThe fate of engineered nanomaterials in ecosystems is unclear. An aquatic stream mesocosm explored the fate and bioaccumulation of silver sulfide nanoparticles (Ag2S NPs) compared to silver nitrate (AgNO3). The aims were to determine the total Ag in water, sediment and biota, and to evaluate the bioavailable fractions of silver in the sediment using a serial extraction method. The total Ag in the water column from a nominal daily dose of 10 μg L−1 of Ag for the AgNO3 or Ag2S NP treatments reached a plateau of around 13 and 12 μg L−1, respectively, by the end of the study. Similarly, the sediment of both Ag-treatments reached ~380 μg Ag kg−1, and with most of it being acid-extractable/labile. The biota accumulated 4–59 μg Ag g−1 dw, depending on the type of Ag-treatment and organism. The oligochaete worm, Lumbriculus variegatus, accumulated Ag from the Ag2S exposure over time, which was similar to the AgNO3 treatment by the end of the experiment. The planarian, Girardia tigrina, and the chironomid larva, Chironomus riparius, showed much higher Ag concentrations than the oligochaete worms; and with a clearer time-dependent statistically significant Ag accumulation relative to the untreated controls. For the pulmonate snail, Physa acuta, bioaccumulation of Ag from AgNO3 and Ag2S NP exposures was observed, but was lower from the nano treatment. The AgNO3 exposure caused appreciable Ag accumulation in the water flea, Daphnia magna, but accumulation was higher in the Ag2S NP treatment (reaching 59 μg g−1 dw). In the rainbow trout, Oncorhynchus mykiss, AgNO3, but not Ag2S NPs, caused total Ag concentrations to increase in the tissues. Overall, the study showed transfer of total Ag from the water column to the sediment, and Ag bioaccumulation in the biota, with Ag from Ag2S NP exposure generally being less bioavailable than that from AgNO3.This work was supported by the project NanoFASE (Nanomaterial Fate and Speciation in the Environment), financed by the European Union's Horizon 2020 research and innovation programme under grant agreement no 646002. RDH was partly supported by NanoHarmony under grant agreement 885931 in Horizon 2020 while redrafting the main text. PVS was awarded with a PhD grant (SFRH/BD/51571/2014) by FCT – Fundação para a Ciência e a Tecnologia. SL and PVS received additional financial support from FCT/MCTES, through national funds, to CESAM (UIDP/50017/2020+UIDB/50017/2020+ LA/P/0094/2020)

    Taking the pulse of Earth's tropical forests using networks of highly distributed plots

    Get PDF
    Tropical forests are the most diverse and productive ecosystems on Earth. While better understanding of these forests is critical for our collective future, until quite recently efforts to measure and monitor them have been largely disconnected. Networking is essential to discover the answers to questions that transcend borders and the horizons of funding agencies. Here we show how a global community is responding to the challenges of tropical ecosystem research with diverse teams measuring forests tree-by-tree in thousands of long-term plots. We review the major scientific discoveries of this work and show how this process is changing tropical forest science. Our core approach involves linking long-term grassroots initiatives with standardized protocols and data management to generate robust scaled-up results. By connecting tropical researchers and elevating their status, our Social Research Network model recognises the key role of the data originator in scientific discovery. Conceived in 1999 with RAINFOR (South America), our permanent plot networks have been adapted to Africa (AfriTRON) and Southeast Asia (T-FORCES) and widely emulated worldwide. Now these multiple initiatives are integrated via ForestPlots.net cyber-infrastructure, linking colleagues from 54 countries across 24 plot networks. Collectively these are transforming understanding of tropical forests and their biospheric role. Together we have discovered how, where and why forest carbon and biodiversity are responding to climate change, and how they feedback on it. This long-term pan-tropical collaboration has revealed a large long-term carbon sink and its trends, as well as making clear which drivers are most important, which forest processes are affected, where they are changing, what the lags are, and the likely future responses of tropical forests as the climate continues to change. By leveraging a remarkably old technology, plot networks are sparking a very modern revolution in tropical forest science. In the future, humanity can benefit greatly by nurturing the grassroots communities now collectively capable of generating unique, long-term understanding of Earth's most precious forests.Additional co-authors: Susan Laurance, William Laurance, Francoise Yoko Ishida, Andrew Marshall, Catherine Waite, Hannsjoerg Woell, Jean-Francois Bastin, Marijn Bauters, Hans Beeckman, Pfascal Boeckx, Jan Bogaert, Charles De Canniere, Thales de Haulleville, Jean-Louis Doucet, Olivier Hardy, Wannes Hubau, Elizabeth Kearsley, Hans Verbeeck, Jason Vleminckx, Steven W. Brewer, Alfredo Alarcón, Alejandro Araujo-Murakami, Eric Arets, Luzmila Arroyo, Ezequiel Chavez, Todd Fredericksen, René Guillén Villaroel, Gloria Gutierrez Sibauty, Timothy Killeen, Juan Carlos Licona, John Lleigue, Casimiro Mendoza, Samaria Murakami, Alexander Parada Gutierrez, Guido Pardo, Marielos Peña-Claros, Lourens Poorter, Marisol Toledo, Jeanneth Villalobos Cayo, Laura Jessica Viscarra, Vincent Vos, Jorge Ahumada, Everton Almeida, Jarcilene Almeida, Edmar Almeida de Oliveira, Wesley Alves da Cruz, Atila Alves de Oliveira, Fabrício Alvim Carvalho, Flávio Amorim Obermuller, Ana Andrade, Fernanda Antunes Carvalho, Simone Aparecida Vieira, Ana Carla Aquino, Luiz Aragão, Ana Claudia Araújo, Marco Antonio Assis, Jose Ataliba Mantelli Aboin Gomes, Fabrício Baccaro, Plínio Barbosa de Camargo, Paulo Barni, Jorcely Barroso, Luis Carlos Bernacci, Kauane Bordin, Marcelo Brilhante de Medeiros, Igor Broggio, José Luís Camargo, Domingos Cardoso, Maria Antonia Carniello, Andre Luis Casarin Rochelle, Carolina Castilho, Antonio Alberto Jorge Farias Castro, Wendeson Castro, Sabina Cerruto Ribeiro, Flávia Costa, Rodrigo Costa de Oliveira, Italo Coutinho, John Cunha, Lola da Costa, Lucia da Costa Ferreira, Richarlly da Costa Silva, Marta da Graça Zacarias Simbine, Vitor de Andrade Kamimura, Haroldo Cavalcante de Lima, Lia de Oliveira Melo, Luciano de Queiroz, José Romualdo de Sousa Lima, Mário do Espírito Santo, Tomas Domingues, Nayane Cristina dos Santos Prestes, Steffan Eduardo Silva Carneiro, Fernando Elias, Gabriel Eliseu, Thaise Emilio, Camila Laís Farrapo, Letícia Fernandes, Gustavo Ferreira, Joice Ferreira, Leandro Ferreira, Socorro Ferreira, Marcelo Fragomeni Simon, Maria Aparecida Freitas, Queila S. García, Angelo Gilberto Manzatto, Paulo Graça, Frederico Guilherme, Eduardo Hase, Niro Higuchi, Mariana Iguatemy, Reinaldo Imbrozio Barbosa, Margarita Jaramillo, Carlos Joly, Joice Klipel, Iêda Leão do Amaral, Carolina Levis, Antonio S. Lima, Maurício Lima Dan, Aline Lopes, Herison Madeiros, William E. Magnusson, Rubens Manoel dos Santos, Beatriz Marimon, Ben Hur Marimon Junior, Roberta Marotti Martelletti Grillo, Luiz Martinelli, Simone Matias Reis, Salomão Medeiros, Milton Meira-Junior, Thiago Metzker, Paulo Morandi, Natanael Moreira do Nascimento, Magna Moura, Sandra Cristina Müller, Laszlo Nagy, Henrique Nascimento, Marcelo Nascimento, Adriano Nogueira Lima, Raimunda Oliveira de Araújo, Jhonathan Oliveira Silva, Marcelo Pansonato, Gabriel Pavan Sabino, Karla Maria Pedra de Abreu, Pablo José Francisco Pena Rodrigues, Maria Piedade, Domingos Rodrigues, José Roberto Rodrigues Pinto, Carlos Quesada, Eliana Ramos, Rafael Ramos, Priscyla Rodrigues, Thaiane Rodrigues de Sousa, Rafael Salomão, Flávia Santana, Marcos Scaranello, Rodrigo Scarton Bergamin, Juliana Schietti, Jochen Schöngart, Gustavo Schwartz, Natalino Silva, Marcos Silveira, Cristiana Simão Seixas, Marta Simbine, Ana Claudia Souza, Priscila Souza, Rodolfo Souza, Tereza Sposito, Edson Stefani Junior, Julio Daniel do Vale, Ima Célia Guimarães Vieira, Dora Villela, Marcos Vital, Haron Xaud, Katia Zanini, Charles Eugene Zartman, Nur Khalish Hafizhah Ideris, Faizah binti Hj Metali, Kamariah Abu Salim, Muhd Shahruney Saparudin, Rafizah Mat Serudin, Rahayu Sukmaria Sukri, Serge Begne, George Chuyong, Marie Noel Djuikouo, Christelle Gonmadje, Murielle Simo-Droissart, Bonaventure Sonké, Hermann Taedoumg, Lise Zemagho, Sean Thomas, Fidèle Baya, Gustavo Saiz, Javier Silva Espejo, Dexiang Chen, Alan Hamilton, Yide Li, Tushou Luo, Shukui Niu, Han Xu, Zhang Zhou, Esteban Álvarez-Dávila, Juan Carlos Andrés Escobar, Henry Arellano-Peña, Jaime Cabezas Duarte, Jhon Calderón, Lina Maria Corrales Bravo, Borish Cuadrado, Hermes Cuadros, Alvaro Duque, Luisa Fernanda Duque, Sandra Milena Espinosa, Rebeca Franke-Ante, Hernando García, Alejandro Gómez, Roy González-M., Álvaro Idárraga-Piedrahíta, Eliana Jimenez, Rubén Jurado, Wilmar López Oviedo, René López-Camacho, Omar Aurelio Melo Cruz, Irina Mendoza Polo, Edwin Paky, Karen Pérez, Angel Pijachi, Camila Pizano, Adriana Prieto, Laura Ramos, Zorayda Restrepo Correa, James Richardson, Elkin Rodríguez, Gina M. Rodriguez M., Agustín Rudas, Pablo Stevenson, Markéta Chudomelová, Martin Dancak, Radim Hédl, Stanislav Lhota, Martin Svatek, Jacques Mukinzi, Corneille Ewango, Terese Hart, Emmanuel Kasongo Yakusu, Janvier Lisingo, Jean-Remy Makana, Faustin Mbayu, Benjamin Toirambe, John Tshibamba Mukendi, Lars Kvist, Gustav Nebel, Selene Báez, Carlos Céron, Daniel M. Griffith, Juan Ernesto Guevara Andino, David Neill, Walter Palacios, Maria Cristina Peñuela-Mora, Gonzalo Rivas-Torres, Gorky Villa, Sheleme Demissie, Tadesse Gole, Techane Gonfa, Kalle Ruokolainen, Michel Baisie, Fabrice Bénédet, Wemo Betian, Vincent Bezard, Damien Bonal, Jerôme Chave, Vincent Droissart, Sylvie Gourlet-Fleury, Annette Hladik, Nicolas Labrière, Pétrus Naisso, Maxime Réjou-Méchain, Plinio Sist, Lilian Blanc, Benoit Burban, Géraldine Derroire, Aurélie Dourdain, Clement Stahl, Natacha Nssi Bengone, Eric Chezeaux, Fidèle Evouna Ondo, Vincent Medjibe, Vianet Mihindou, Lee White, Heike Culmsee, Cristabel Durán Rangel, Viviana Horna, Florian Wittmann, Stephen Adu-Bredu, Kofi Affum-Baffoe, Ernest Foli, Michael Balinga, Anand Roopsind, James Singh, Raquel Thomas, Roderick Zagt, Indu K. Murthy, Kuswata Kartawinata, Edi Mirmanto, Hari Priyadi, Ismayadi Samsoedin, Terry Sunderland, Ishak Yassir, Francesco Rovero, Barbara Vinceti, Bruno Hérault, Shin-Ichiro Aiba, Kanehiro Kitayama, Armandu Daniels, Darlington Tuagben, John T. Woods, Muhammad Fitriadi, Alexander Karolus, Kho Lip Khoon, Noreen Majalap, Colin Maycock, Reuben Nilus, Sylvester Tan, Almeida Sitoe, Indiana Coronado G., Lucas Ojo, Rafael de Assis, Axel Dalberg Poulsen, Douglas Sheil, Karen Arévalo Pezo, Hans Buttgenbach Verde, Victor Chama Moscoso, Jimmy Cesar Cordova Oroche, Fernando Cornejo Valverde, Massiel Corrales Medina, Nallaret Davila Cardozo, Jano de Rutte Corzo, Jhon del Aguila Pasquel, Gerardo Flores Llampazo, Luis Freitas, Darcy Galiano Cabrera, Roosevelt García Villacorta, Karina Garcia Cabrera, Diego García Soria, Leticia Gatica Saboya, Julio Miguel Grandez Rios, Gabriel Hidalgo Pizango, Eurídice Honorio Coronado, Isau Huamantupa-Chuquimaco, Walter Huaraca Huasco, Yuri Tomas Huillca Aedo, Jose Luis Marcelo Peña, Abel Monteagudo Mendoza, Vanesa Moreano Rodriguez, Percy Núñez Vargas, Sonia Cesarina Palacios Ramos, Nadir Pallqui Camacho, Antonio Peña Cruz, Freddy Ramirez Arevalo, José Reyna Huaymacari, Carlos Reynel Rodriguez, Marcos Antonio Ríos Paredes, Lily Rodriguez Bayona, Rocio del Pilar Rojas Gonzales, Maria Elena Rojas Peña, Norma Salinas Revilla, Yahn Carlos Soto Shareva, Raul Tupayachi Trujillo, Luis Valenzuela Gamarra, Rodolfo Vasquez Martinez, Jim Vega Arenas, Christian Amani, Suspense Averti Ifo, Yannick Bocko, Patrick Boundja, Romeo Ekoungoulou, Mireille Hockemba, Donatien Nzala, Alusine Fofanah, David Taylor, Guillermo Bañares-de Dios, Luis Cayuela, Íñigo Granzow-de la Cerda, Manuel Macía, Juliana Stropp, Maureen Playfair, Verginia Wortel, Toby Gardner, Robert Muscarella, Hari Priyadi, Ervan Rutishauser, Kuo-Jung Chao, Pantaleo Munishi, Olaf Bánki, Frans Bongers, Rene Boot, Gabriella Fredriksson, Jan Reitsma, Hans ter Steege, Tinde van Andel, Peter van de Meer, Peter van der Hout, Mark van Nieuwstadt, Bert van Ulft, Elmar Veenendaal, Ronald Vernimmen, Pieter Zuidema, Joeri Zwerts, Perpetra Akite, Robert Bitariho, Colin Chapman, Eilu Gerald, Miguel Leal, Patrick Mucunguzi, Miguel Alexiades, Timothy R. Baker, Karina Banda, Lindsay Banin, Jos Barlow, Amy Bennett, Erika Berenguer, Nicholas Berry, Neil M. Bird, George A. Blackburn, Francis Brearley, Roel Brienen, David Burslem, Lidiany Carvalho, Percival Cho, Fernanda Coelho, Murray Collins, David Coomes, Aida Cuni-Sanchez, Greta Dargie, Kyle Dexter, Mat Disney, Freddie Draper, Muying Duan, Adriane Esquivel-Muelbert, Robert Ewers, Belen Fadrique, Sophie Fauset, Ted R. Feldpausch, Filipe França, David Galbraith, Martin Gilpin, Emanuel Gloor, John Grace, Keith Hamer, David Harris, Tommaso Jucker, Michelle Kalamandeen, Bente Klitgaard, Aurora Levesley, Simon L. Lewis, Jeremy Lindsell, Gabriela Lopez-Gonzalez, Jon Lovett, Yadvinder Malhi, Toby Marthews, Emma McIntosh, Karina Melgaço, William Milliken, Edward Mitchard, Peter Moonlight, Sam Moore, Alexandra Morel, Julie Peacock, Kelvin Peh, Colin Pendry, R. Toby Pennington, Luciana de Oliveira Pereira, Carlos Peres, Oliver L. Phillips, Georgia Pickavance, Thomas Pugh, Lan Qie, Terhi Riutta, Katherine Roucoux, Casey Ryan, Tiina Sarkinen, Camila Silva Valeria, Dominick Spracklen, Suzanne Stas, Martin Sullivan, Michael Swaine, Joey Talbot, James Taplin, Geertje van der Heijden, Laura Vedovato, Simon Willcock, Mathew Williams, Luciana Alves, Patricia Alvarez Loayza, Gabriel Arellano, Cheryl Asa, Peter Ashton, Gregory Asner, Terry Brncic, Foster Brown, Robyn Burnham, Connie Clark, James Comiskey, Gabriel Damasco, Stuart Davies, Tony Di Fiore, Terry Erwin, William Farfan-Rios, Jefferson Hall, David Kenfack, Thomas Lovejoy, Roberta Martin, Olga Martha Montiel, John Pipoly, Nigel Pitman, John Poulsen, Richard Primack, Miles Silman, Marc Steininger, Varun Swamy, John Terborgh, Duncan Thomas, Peter Umunay, Maria Uriarte, Emilio Vilanova Torre, Ophelia Wang, Kenneth Young, Gerardo A. Aymard C., Lionel Hernández, Rafael Herrera Fernández, Hirma Ramírez-Angulo, Pedro Salcedo, Elio Sanoja, Julio Serrano, Armando Torres-Lezama, Tinh Cong Le, Trai Trong Le, Hieu Dang Tra

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Quantification and modelling of accumulation kinetics of nanomaterials in soil organisms under environmentally relevant conditions

    No full text
    Chapter 1 introduced the objectives of the thesis and background information regarding the production of nanomaterials (NMs) and their release in the environment. The concepts of environmental and bio-mediated transformations of NMs were defined and their implication on the NM exposure assessment is explained. Silver nanoparticles (Ag-NPs) were selected as model NM because they are widely produced, undergo transformations that represent all the most relevant transformations of NMs in soil and specific analytical methods are available to quantify them at relatively low concentrations. A short review regarding previous toxicological studies of Ag-NPs in soil organisms and the importance of performing toxicokinetic studies was presented. Finally, selected model organisms (earthworms Eisenia fetida and Lumbricus rubellus) were briefly described. Chapter 2 reported a short-term (28 days) toxicokinetic study in E. fetida exposed to Ag-NPs, aged Ag-NPs (Ag2S-NPs), and AgNO3. A one-compartment model was applied to calculate separately the kinetic constants for uptake and elimination of particulate and ionic forms of Ag. The uptake and elimination rate constants for earthworms exposed to pristine Ag-NP or AgNO3 were not significantly different from each other. Uptake rate constants of (hardly dissolvable) Ag2S-NPs which resemble the environmental relevant form of Ag-NPs was significantly lower. spICP-MS analysis demonstrated that ~85% (average of both Ag-NP and AgNO3 treatments) of the Ag within the earthworms was present as ionic Ag, regardless of the actual form of Ag that the earthworms were exposed to. Indeed, the biogenic formation of particulate Ag (~10 % of total Ag accumulated overtime) in earthworms exposed to AgNO3 led to a kinetic pattern of particulate Ag body burden similar to pristine Ag-NPs. NP size analysis and imaging techniques showed evidences that the particles in the tissues were not the same as those to which worms were exposed, highlighting that biotransformation and/or biogenic formation took place also in the case of the Ag-NP exposure. Chapter 3 investigated the influence of dissolution on the uptake of metal NPs in earthworms by the use of bimetallic NPs. E. fetida specimens were exposed to Au core-Ag shell NPs (Au@Ag-NPs) and to a combination of Au-NPs, Ag-NPs, Ag and Au ions containing natural soil for 28 days. Our hypothesis was that Ag shell would dissolve partially or completely and that Au core would not interact with the exposure media and would therefore behave as a tracer of the particulate uptake. Analysis of earthworm tissues showed that concentrations of Ag in the earthworms were not statistically different in organisms exposed to the different forms of Ag. However, the concentration of Au in the earthworms exposed to HAuCl4 (ionic Au) exceeded around twenty times the Au concentrations in the exposures to particulate Au, which did not differ among each other. Mass measurements by spICP-TOFMS provided evidence that the uptake of the metals in their bimetallic particulate form represents approximately 5 % of the total metal amount. Size measurements by spICP-TOFMS showed that the Au core remained similar after the uptake, while the Ag shell increased in thickness suggesting that biotransformation processes took place at the surface of the NPs (e.g. aggregation, adsorption of Ag ions on the surface of existing particles). The study confirmed that dissolution is the main factor driving the uptake of (dissolving) metal NPs in earthworms. Additionally, different uptake patterns resulted from the co-exposure to Au and Ag-NP and Ag+, indicating that the Ag form can lead to different interactions with Au in the soil affecting the uptake in the earthworms. Chapter 4 presented a toxicokinetic study performed to assess the potential impacts of long-term exposure (nine months) on the uptake of pristine Ag-NP, aged Ag-NP (Ag2S-NP) and ionic Ag in earthworms E. fetida. The study was conducted with same species and conditions similar to the short-term experiment which was previously conducted for 4 weeks (chapter 2), in order to allow comparison between the two models. The accumulation of Ag in Ag-NP and AgNO3 exposed earthworms did not statistically differ after nine months exposure. In Ag2S-NPs exposed earthworms, the internalized concentrations were five times lower compared to the other treatments. The Ag concentrations in pore water did not reflect the uptake pattern and metallothionein concentrations were not different from the control group. The overall conclusion of this chapter was that even after a prolonged period of time the uptake kinetic rate constants of Ag-NP and AgNO3 were not statistically different, while the one of Ag2S-NP was statistically significant lower than the other treatments. Additionally, the short-term kinetic rate constants predicted the average bioaccumulation of pristine Ag-NP and AgNO3 in the earthworms exposed for nine months, while the bioaccumulation of Ag2S-NPs in earthworms was under-predicted somewhat. This was likely because the short-term did not take into account the late dissolution of Ag2-NPs. Ag bioaccumulation of Ag2S-NP could not be related to the concentrations of Ag measured at a specific time in pore water. Chapter 5 reports a study which demonstrated that earthworm bioturbation plays an important role in the vertical transport of Ag2S-NPs in soil. In the soil columns, daily rainfall from artificial rain water did not lead to displacement of Ag2S-NPs within 28 days indicating that in the case of hardly soluble metal NPs and unsaturated soil conditions, bio-mediated transport overcomes physical chemical transport.  Bioturbation from L. rubellus was quantified by assessing the changes of the macro porosity in the soil columns. Results indicated that earthworms burrowing activity was not affected by the presence of Ag2S-NPs at the experimental concentrations. The study proposed a linear relationship between bioturbation rate and the abundance of earthworms that is applicable to future bioturbation studies. Chapter 6 presented an overall discussion of the results obtained in the thesis, and concluded with the implication of such findings in the risk assessment of NMs

    Are long-term exposure studies needed? Short-term toxicokinetic model predicts the uptake of metal nanoparticles in earthworms after nine months

    No full text
    Uptake of most metal nanoparticles (NPs) in organisms is assumed to be mainly driven by the bioavailability of the released ions, as has been verified in controlled and short-term exposure tests. However, the changeability of NPs and the dynamic processes which NPs undergo in the soil environment, bring uncertainty regarding their interactions with soil organisms over a long period of time. To assess the potential impacts of long-term exposure scenarios on the toxicokinetic of metal NPs, earthworms Eisenia fetida were exposed to soils spiked with pristine Ag-NP, aged Ag-NP (Ag2S-NP) and ionic Ag for nine months, and results were compared to those from a similar short-term (28 days) experiment, conducted under similar conditions. Overall, there were no statistical differences between long-term accumulation patterns in earthworms exposed to pristine Ag-NP and AgNO3, while for Ag2S-NP, the amount of Ag internalized after 9 months was five times lower than for the other treatments. Average Ag concentrations in soil pore water in all treatments did not change over time, however the soil pH decreased and electrical conductivity increased in all treatments. Metallothionein concentrations in exposed earthworms were not statistically different from levels in untreated earthworms. Finally, the short-term toxicokinetic models predicted the bioaccumulation in earthworms exposed to Ag-NP, AgNO3 after nine months on the whole. Although the bioaccumulation for Ag2S-NPs was somewhat under-predicted, the rate of accumulation of Ag2S-NPs is much lower than that of Ag-NPs or AgNO3 and thus potentially of lower concern. Nevertheless, better understanding about the exposure kinetics of Ag2S-NP would help to address potential nano-specific toxicokinetic and toxicodynamics, also of other sulfidized metal NPs

    Species Differences in in vitro and Estimated in vivo Kinetics for Intestinal Microbiota Mediated Metabolism of Acetyl-deoxynivalenols

    No full text
    Scope: Deoxynivalenol (DON) and its acetylated derivatives 3-acetyl-DON (3-Ac-DON) and 15-acetyl-DON (15-Ac-DON) are important mycotoxins of concern in the modern food chain. Methods and Results: The present study reveals that the rate of de-acetylation in in vitro anaerobic fecal incubations decreased in the order rat > mouse > human > pig for 3-Ac-DON, and mouse > human > rat > pig for 15-Ac-DON. The ratio between the de-acetylation rate of 3-Ac-DON and 15-Ac-DON varies with the species. Scaling of the kinetic parameters to the in vivo situation results in catalytic efficiencies decreasing in the order human > rat > pig > mouse for 3-Ac-DON and human > pig > rat > mouse for 15-Ac-DON. The results obtained indicate that in mice, 3-Ac-DON can be fully deconjugated while 15-Ac-DON cannot. In rats, pigs, and humans, both 3-Ac-DON and 15-Ac-DON can be totally transformed by gut fecal microbiota during the estimated intestinal residence time. A correlation analysis between the deacetylation rate and the relative abundance of the microbiome suggests Lachnospiraceae may be involved in the deacetylation process. Conclusion: It is concluded that interspecies differences in deacetylation of acetylated DONs exist but that in risk assessment assumption of complete intestinal deconjugation provides an adequate approach.</p

    Interindividual Differences in Human Intestinal Microbial Conversion of (-)-Epicatechin to Bioactive Phenolic Compounds

    No full text
    To quantify interindividual differences in the human intestinal microbial metabolism of (-)-epicatechin (EC), in vitro anaerobic incubations with fecal inocula from 24 healthy donors were conducted. EC-derived colonic microbial metabolites were qualitatively and quantitively analyzed by liquid chromatography triple quadrupole mass spectrometry (LC-TQ-MS) and liquid chromatography time-of-flight mass spectrometry (LC-TOF-MS). Quantitative microbiota characterization was achieved by 16S rRNA analysis. The results obtained show 1-(3′,4′-dihydroxyphenyl)-3-(2″,4″,6″-dihydroxyphenyl)-2-propanol (3,4-diHPP-2-ol) and 5-(3′,4′-dihydroxyphenyl)-γ-valerolactone (3,4-diHPV) to be key intermediate microbial metabolites of EC and also revealed the substantial interindividual differences in both the rate of EC conversion and the time-dependent EC metabolite pattern. Furthermore, substantial differences in microbiota composition among different individuals were detected. Correlations between specific microbial phylotypes and formation of certain metabolites were established. It is concluded that interindividual differences in the intestinal microbial metabolism of EC may contribute to interindividual differences in potential health effects of EC-abundant dietary foods or drinks. </p
    corecore