43 research outputs found

    Genomic analyses of Mycobacterium tuberculosis from human lung resections reveal a high frequency of polyclonal infections

    Get PDF
    Polyclonal infections occur when at least two unrelated strains of the same pathogen are detected in an individual. This has been linked to worse clinical outcomes in tuberculosis, as undetected strains with different antibiotic resistance profiles can lead to treatment failure. Here, we examine the amount of polyclonal infections in sputum and surgical resections from patients with tuberculosis in the country of Georgia. For this purpose, we sequence and analyse the genomes of Mycobacterium tuberculosis isolated from the samples, acquired through an observational clinical study (NCT02715271). Access to the lung enhanced the detection of multiple strains (40% of surgery cases) as opposed to just using a sputum sample (0-5% in the general population). We show that polyclonal infections often involve genetically distant strains and can be associated with reversion of the patient's drug susceptibility profile over time. In addition, we find different patterns of genetic diversity within lesions and across patients, including mutational signatures known to be associated with oxidative damage; this suggests that reactive oxygen species may be acting as a selective pressure in the granuloma environment. Our results support the idea that the magnitude of polyclonal infections in high-burden tuberculosis settings is underestimated when only testing sputum samples

    Combined species identification, genotyping, and drug resistance detection of mycobacterium tuberculosis cultures by mlpa on a bead-based array

    Get PDF
    The population structure of Mycobacterium tuberculosis is typically clonal therefore genotypic lineages can be unequivocally identified by characteristic markers such as mutations or genomic deletions. In addition, drug resistance is mainly mediated by mutations. These issues make multiplexed detection of selected mutations potentially a very powerful tool to characterise Mycobacterium tuberculosis. We used Multiplex Ligation-dependent Probe Amplification (MLPA) to screen for dispersed mutations, which can be successfully applied to Mycobacterium tuberculosis as was previously shown. Here we selected 47 discriminative and informative markers and designed MLPA probes accordingly to allow analysis with a liquid bead array and robust reader (Luminex MAGPIX technology). To validate the bead-based MLPA, we screened a panel of 88 selected strains, previously characterised by other methods with the developed multiplex assay using automated positive and negative calling. In total 3059 characteristics were screened and 3034 (99.2%) were consistent with previous molecular characterizations, of which 2056 (67.2%) were directly supported by other molecular methods, and 978 (32.0%) were consistent with but not directly supported by previous molecular characterizations. Results directly conflicting or inconsistent with previous methods, were obtained for 25 (0.8%) of the characteristics tested. Here we report the validation of the bead-based MLPA and demonstrate its potential to simultaneously identify a range of drug resistance markers, discriminate the species within the Mycobacterium tuberculosis complex, determine the genetic lineage and detect and identify the clinically most relevant non-tuberculous mycobacterial species. The detection of multiple genetic markers in clinically derived Mycobacterium tuberculosis strains with a multiplex assay could reduce the number of TB-dedicated screening methods needed for full characterization. Additionally, as a proportion of the markers screened are specific to certain Mycobacterium tuberculosis lineages each profile can be checked for internal consistency. Strain characterization can allow selection of appropriate treatment and thereby improve treatment outcome and patient management

    Accuracy of line probe assays for the diagnosis of pulmonary and multidrug-resistant tuberculosis: a systematic review and meta-analysis.

    Get PDF
    Only 25% of multidrug-resistant tuberculosis (MDR-TB) cases are currently diagnosed. Line probe assays (LPAs) enable rapid drug-susceptibility testing for rifampicin (RIF) and isoniazid (INH) resistance and Mycobacterium tuberculosis detection. Genotype MTBDRplusV1 was WHO-endorsed in 2008 but newer LPAs have since been developed. This systematic review evaluated three LPAs: Hain Genotype MTBDRplusV1, MTBDRplusV2 and Nipro NTM+MDRTB. Study quality was assessed with QUADAS-2. Bivariate random-effects meta-analyses were performed for direct and indirect testing. Results for RIF and INH resistance were compared to phenotypic and composite (incorporating sequencing) reference standards. M. tuberculosis detection results were compared to culture. 74 unique studies were included. For RIF resistance (21 225 samples), pooled sensitivity and specificity (with 95% confidence intervals) were 96.7% (95.6–97.5%) and 98.8% (98.2–99.2%). For INH resistance (20 954 samples), pooled sensitivity and specificity were 90.2% (88.2–91.9%) and 99.2% (98.7–99.5%). Results were similar for direct and indirect testing and across LPAs. Using a composite reference standard, specificity increased marginally. For M. tuberculosis detection (3451 samples), pooled sensitivity was 94% (89.4–99.4%) for smear-positive specimens and 44% (20.2–71.7%) for smear-negative specimens. In patients with pulmonary TB, LPAs have high sensitivity and specificity for RIF resistance and high specificity and good sensitivity for INH resistance. This meta-analysis provides evidence for policy and practice

    Use of a Molecular Diagnostic Test in AFB Smear Positive Tuberculosis Suspects Greatly Reduces Time to Detection of Multidrug Resistant Tuberculosis

    Get PDF
    Background: The WHO has recommended the implementation of rapid diagnostic tests to detect and help combat M/XDR tuberculosis (TB). There are limited data on the performance and impact of these tests in field settings. Methods: The performance of the commercially available Genotype MTBDRplus molecular assay was compared to conventional methods including AFB smear, culture and drug susceptibility testing (DST) using both an absolute concentration method on Löwenstein-Jensen media and broth-based method using the MGIT 960 system. Sputum specimens were obtained from TB suspects in the country of Georgia who received care through the National TB Program. Results: Among 500 AFB smear-positive sputum specimens, 458 (91.6%) had both a positive sputum culture for Mycobacterium tuberculosis and a valid MTBDRplus assay result. The MTBDRplus assay detected isoniazid (INH) resistanc

    Genomic analyses of Mycobacterium tuberculosis from human lung resections reveal a high frequency of polyclonal infections

    Get PDF
    11 páginas, 5 figuras, 1 tablaPolyclonal infections occur when at least two unrelated strains of the same pathogen are detected in an individual. This has been linked to worse clinical outcomes in tuberculosis, as undetected strains with different antibiotic resistance profiles can lead to treatment failure. Here, we examine the amount of polyclonal infections in sputum and surgical resections from patients with tuberculosis in the country of Georgia. For this purpose, we sequence and analyse the genomes of Mycobacterium tuberculosis isolated from the samples, acquired through an observational clinical study (NCT02715271). Access to the lung enhanced the detection of multiple strains (40% of surgery cases) as opposed to just using a sputum sample (0-5% in the general population). We show that polyclonal infections often involve genetically distant strains and can be associated with reversion of the patient's drug susceptibility profile over time. In addition, we find different patterns of genetic diversity within lesions and across patients, including mutational signatures known to be associated with oxidative damage; this suggests that reactive oxygen species may be acting as a selective pressure in the granuloma environment. Our results support the idea that the magnitude of polyclonal infections in high-burden tuberculosis settings is underestimated when only testing sputum samples.The authors were supported by projects SAF2016-77346-R and PID2019-104477RB-I00 awarded to IC and the grant BES-2017-079656 awarded to MM by the Spanish Ministry of Economy and Competitiveness and Ministry of Science, the ERC project 638553-TBACCELERATE awarded to IC, Spanish Government-FEDER Funds through CV contract CPII18/00031 and grant PI16/01511, and Generalitat Valencia Grant to I.C. (code PROMETEO/2020/012). The grant providers played no part in study design, data collection, and analysis, or the preparation of the manuscript.Peer reviewe

    Management of MDR-TB in HIV co-infected patients in Eastern Europe: Results from the TB:HIV study

    Get PDF
    Objectives Mortality among HIV patients with tuberculosis (TB) remains high in Eastern Europe (EE), but details of TB and HIV management remain scarce. Methods In this prospective study, we describe the TB treatment regimens of patients with multi-drug resistant (MDR) TB and use of antiretroviral therapy (ART). Results A total of 105 HIV-positive patients had MDR-TB (including 33 with extensive drug resistance) and 130 pan-susceptible TB. Adequate initial TB treatment was provided for 8% of patients with MDR-TB compared with 80% of those with pan-susceptible TB. By twelve months, an estimated 57.3% (95%CI 41.5\u201374.1) of MDR-TB patients had started adequate treatment. While 67% received ART, HIV-RNA suppression was demonstrated in only 23%. Conclusions Our results show that internationally recommended MDR-TB treatment regimens were infrequently used and that ART use and viral suppression was well below the target of 90%, reflecting the challenging patient population and the environment in which health care is provided. Urgent improvement of management of patients with TB/HIV in EE, in particular for those with MDR-TB, is needed and includes widespread access to rapid TB diagnostics, better access to and use of second-line TB drugs, timely ART initiation with viral load monitoring, and integration of TB/HIV care

    Investigating resistance in clinical Mycobacterium tuberculosis complex isolates with genomic and phenotypic antimicrobial susceptibility testing: a multicentre observational study.

    Get PDF
    BACKGROUND: Whole-genome sequencing (WGS) of Mycobacterium tuberculosis complex has become an important tool in diagnosis and management of drug-resistant tuberculosis. However, data correlating resistance genotype with quantitative phenotypic antimicrobial susceptibility testing (AST) are scarce. METHODS: In a prospective multicentre observational study, 900 clinical M tuberculosis complex isolates were collected from adults with drug-resistant tuberculosis in five high-endemic tuberculosis settings around the world (Georgia, Moldova, Peru, South Africa, and Viet Nam) between Dec 5, 2014, and Dec 12, 2017. Minimum inhibitory concentrations (MICs) and resulting binary phenotypic AST results for up to nine antituberculosis drugs were determined and correlated with resistance-conferring mutations identified by WGS. FINDINGS: Considering WHO-endorsed critical concentrations as reference, WGS had high accuracy for prediction of resistance to isoniazid (sensitivity 98·8% [95% CI 98·5-99·0]; specificity 96·6% [95% CI 95·2-97·9]), levofloxacin (sensitivity 94·8% [93·3-97·6]; specificity 97·1% [96·7-97·6]), kanamycin (sensitivity 96·1% [95·4-96·8]; specificity 95·0% [94·4-95·7]), amikacin (sensitivity 97·2% [96·4-98·1]; specificity 98·6% [98·3-98·9]), and capreomycin (sensitivity 93·1% [90·0-96·3]; specificity 98·3% [98·0-98·7]). For rifampicin, pyrazinamide, and ethambutol, the specificity of resistance prediction was suboptimal (64·0% [61·0-67·1], 83·8% [81·0-86·5], and 40·1% [37·4-42·9], respectively). Specificity for rifampicin increased to 83·9% when borderline mutations with MICs overlapping with the critical concentration were excluded. Consequently, we highlighted mutations in M tuberculosis complex isolates that are often falsely identified as susceptible by phenotypic AST, and we identified potential novel resistance-conferring mutations. INTERPRETATION: The combined analysis of mutations and quantitative phenotypes shows the potential of WGS to produce a refined interpretation of resistance, which is needed for individualised therapy, and eventually could allow differential drug dosing. However, variability of MIC data for some M tuberculosis complex isolates carrying identical mutations also reveals limitations of our understanding of the genotype and phenotype relationships (eg, including epistasis and strain genetic background). FUNDING: Bill & Melinda Gates Foundation, German Centre for Infection Research, German Research Foundation, Excellence Cluster Precision Medicine of Inflammation (EXC 2167), and Leibniz ScienceCampus EvoLUNG

    Xpert MTB/RIF and Xpert Ultra assays for screening for pulmonary tuberculosis and rifampicin resistance in adults, irrespective of signs or symptoms

    Get PDF
    Background Tuberculosis is a leading cause of infectious disease‐related death and is one of the top 10 causes of death worldwide. The World Health Organization (WHO) recommends the use of specific rapid molecular tests, including Xpert MTB/RIF or Xpert Ultra, as initial diagnostic tests for the detection of tuberculosis and rifampicin resistance in people with signs and symptoms of tuberculosis. However, the WHO estimates that nearly one‐third of all active tuberculosis cases go undiagnosed and unreported. We were interested in whether a single test, Xpert MTB/RIF or Xpert Ultra, could be useful as a screening test to close this diagnostic gap and improve tuberculosis case detection. Objectives To estimate the accuracy of Xpert MTB/RIF and Xpert Ultra for screening for pulmonary tuberculosis in adults, irrespective of signs or symptoms of pulmonary tuberculosis in high‐risk groups and in the general population. Screening "irrespective of signs or symptoms" refers to screening of people who have not been assessed for the presence of tuberculosis symptoms (e.g. cough). To estimate the accuracy of Xpert MTB/RIF and Xpert Ultra for detecting rifampicin resistance in adults screened for tuberculosis, irrespective of signs and symptoms of pulmonary tuberculosis in high‐risk groups and in the general population. Search methods We searched 12 databases including the Cochrane Infectious Diseases Group Specialized Register, MEDLINE and Embase, on 19 March 2020 without language restrictions. We also reviewed reference lists of included articles and related Cochrane Reviews, and contacted researchers in the field to identify additional studies. Selection criteria Cross‐sectional and cohort studies in which adults (15 years and older) in high‐risk groups (e.g. people living with HIV, household contacts of people with tuberculosis) or in the general population were screened for pulmonary tuberculosis using Xpert MTB/RIF or Xpert Ultra. For tuberculosis detection, the reference standard was culture. For rifampicin resistance detection, the reference standards were culture‐based drug susceptibility testing and line probe assays. Data collection and analysis Two review authors independently extracted data using a standardized form and assessed risk of bias and applicability using QUADAS‐2. We used a bivariate random‐effects model to estimate pooled sensitivity and specificity with 95% credible intervals (CrIs) separately for tuberculosis detection and rifampicin resistance detection. We estimated all models using a Bayesian approach. For tuberculosis detection, we first estimated screening accuracy in distinct high‐risk groups, including people living with HIV, household contacts, people residing in prisons, and miners, and then in several high‐risk groups combined. Main results We included a total of 21 studies: 18 studies (13,114 participants) evaluated Xpert MTB/RIF as a screening test for pulmonary tuberculosis and one study (571 participants) evaluated both Xpert MTB/RIF and Xpert Ultra. Three studies (159 participants) evaluated Xpert MTB/RIF for rifampicin resistance. Fifteen studies (75%) were conducted in high tuberculosis burden and 16 (80%) in high TB/HIV‐burden countries. We judged most studies to have low risk of bias in all four QUADAS‐2 domains and low concern for applicability. Xpert MTB/RIF and Xpert Ultra as screening tests for pulmonary tuberculosis In people living with HIV (12 studies), Xpert MTB/RIF pooled sensitivity and specificity (95% CrI) were 61.8% (53.6 to 69.9) (602 participants; moderate‐certainty evidence) and 98.8% (98.0 to 99.4) (4173 participants; high‐certainty evidence). Of 1000 people where 50 have tuberculosis on culture, 40 would be Xpert MTB/RIF‐positive; of these, 9 (22%) would not have tuberculosis (false‐positives); and 960 would be Xpert MTB/RIF‐negative; of these, 19 (2%) would have tuberculosis (false‐negatives). In people living with HIV (1 study), Xpert Ultra sensitivity and specificity (95% CI) were 69% (57 to 80) (68 participants; very low‐certainty evidence) and 98% (97 to 99) (503 participants; moderate‐certainty evidence). Of 1000 people where 50 have tuberculosis on culture, 53 would be Xpert Ultra‐positive; of these, 19 (36%) would not have tuberculosis (false‐positives); and 947 would be Xpert Ultra‐negative; of these, 16 (2%) would have tuberculosis (false‐negatives). In non‐hospitalized people in high‐risk groups (5 studies), Xpert MTB/RIF pooled sensitivity and specificity were 69.4% (47.7 to 86.2) (337 participants, low‐certainty evidence) and 98.8% (97.2 to 99.5) (8619 participants, moderate‐certainty evidence). Of 1000 people where 10 have tuberculosis on culture, 19 would be Xpert MTB/RIF‐positive; of these, 12 (63%) would not have tuberculosis (false‐positives); and 981 would be Xpert MTB/RIF‐negative; of these, 3 (0%) would have tuberculosis (false‐negatives). We did not identify any studies using Xpert MTB/RIF or Xpert Ultra for screening in the general population. Xpert MTB/RIF as a screening test for rifampicin resistance Xpert MTB/RIF sensitivity was 81% and 100% (2 studies, 20 participants; very low‐certainty evidence), and specificity was 94% to 100%, (3 studies, 139 participants; moderate‐certainty evidence). Authors' conclusions Of the high‐risks groups evaluated, Xpert MTB/RIF applied as a screening test was accurate for tuberculosis in high tuberculosis burden settings. Sensitivity and specificity were similar in people living with HIV and non‐hospitalized people in high‐risk groups. In people living with HIV, Xpert Ultra sensitivity was slightly higher than that of Xpert MTB/RIF and specificity similar. As there was only one study of Xpert Ultra in this analysis, results should be interpreted with caution. There were no studies that evaluated the tests in people with diabetes mellitus and other groups considered at high‐risk for tuberculosis, or in the general population

    Xpert MTB/RIF Ultra and Xpert MTB/RIF assays for extrapulmonary tuberculosis and rifampicin resistance in adults.

    Get PDF
    BACKGROUND: Xpert MTB/RIF Ultra (Xpert Ultra) and Xpert MTB/RIF are World Health Organization (WHO)-recommended rapid nucleic acid amplification tests (NAATs) widely used for simultaneous detection of Mycobacterium tuberculosis complex and rifampicin resistance in sputum. To extend our previous review on extrapulmonary tuberculosis (Kohli 2018), we performed this update to inform updated WHO policy (WHO Consolidated Guidelines (Module 3) 2020). OBJECTIVES: To estimate diagnostic accuracy of Xpert Ultra and Xpert MTB/RIF for extrapulmonary tuberculosis and rifampicin resistance in adults with presumptive extrapulmonary tuberculosis. SEARCH METHODS: Cochrane Infectious Diseases Group Specialized Register, MEDLINE, Embase, Science Citation Index, Web of Science, Latin American Caribbean Health Sciences Literature, Scopus, ClinicalTrials.gov, the WHO International Clinical Trials Registry Platform, the International Standard Randomized Controlled Trial Number Registry, and ProQuest, 2 August 2019 and 28 January 2020 (Xpert Ultra studies), without language restriction. SELECTION CRITERIA: Cross-sectional and cohort studies using non-respiratory specimens. Forms of extrapulmonary tuberculosis: tuberculous meningitis and pleural, lymph node, bone or joint, genitourinary, peritoneal, pericardial, disseminated tuberculosis. Reference standards were culture and a study-defined composite reference standard (tuberculosis detection); phenotypic drug susceptibility testing and line probe assays (rifampicin resistance detection). DATA COLLECTION AND ANALYSIS: Two review authors independently extracted data and assessed risk of bias and applicability using QUADAS-2. For tuberculosis detection, we performed separate analyses by specimen type and reference standard using the bivariate model to estimate pooled sensitivity and specificity with 95% credible intervals (CrIs). We applied a latent class meta-analysis model to three forms of extrapulmonary tuberculosis. We assessed certainty of evidence using GRADE. MAIN RESULTS: 69 studies: 67 evaluated Xpert MTB/RIF and 11 evaluated Xpert Ultra, of which nine evaluated both tests. Most studies were conducted in China, India, South Africa, and Uganda. Overall, risk of bias was low for patient selection, index test, and flow and timing domains, and low (49%) or unclear (43%) for the reference standard domain. Applicability for the patient selection domain was unclear for most studies because we were unsure of the clinical settings. Cerebrospinal fluid Xpert Ultra (6 studies) Xpert Ultra pooled sensitivity and specificity (95% CrI) against culture were 89.4% (79.1 to 95.6) (89 participants; low-certainty evidence) and 91.2% (83.2 to 95.7) (386 participants; moderate-certainty evidence). Of 1000 people where 100 have tuberculous meningitis, 168 would be Xpert Ultra-positive: of these, 79 (47%) would not have tuberculosis (false-positives) and 832 would be Xpert Ultra-negative: of these, 11 (1%) would have tuberculosis (false-negatives). Xpert MTB/RIF (30 studies) Xpert MTB/RIF pooled sensitivity and specificity against culture were 71.1% (62.8 to 79.1) (571 participants; moderate-certainty evidence) and 96.9% (95.4 to 98.0) (2824 participants; high-certainty evidence). Of 1000 people where 100 have tuberculous meningitis, 99 would be Xpert MTB/RIF-positive: of these, 28 (28%) would not have tuberculosis; and 901 would be Xpert MTB/RIF-negative: of these, 29 (3%) would have tuberculosis. Pleural fluid Xpert Ultra (4 studies) Xpert Ultra pooled sensitivity and specificity against culture were 75.0% (58.0 to 86.4) (158 participants; very low-certainty evidence) and 87.0% (63.1 to 97.9) (240 participants; very low-certainty evidence). Of 1000 people where 100 have pleural tuberculosis, 192 would be Xpert Ultra-positive: of these, 117 (61%) would not have tuberculosis; and 808 would be Xpert Ultra-negative: of these, 25 (3%) would have tuberculosis. Xpert MTB/RIF (25 studies) Xpert MTB/RIF pooled sensitivity and specificity against culture were 49.5% (39.8 to 59.9) (644 participants; low-certainty evidence) and 98.9% (97.6 to 99.7) (2421 participants; high-certainty evidence). Of 1000 people where 100 have pleural tuberculosis, 60 would be Xpert MTB/RIF-positive: of these, 10 (17%) would not have tuberculosis; and 940 would be Xpert MTB/RIF-negative: of these, 50 (5%) would have tuberculosis. Lymph node aspirate Xpert Ultra (1 study) Xpert Ultra sensitivity and specificity (95% confidence interval) against composite reference standard were 70% (51 to 85) (30 participants; very low-certainty evidence) and 100% (92 to 100) (43 participants; low-certainty evidence). Of 1000 people where 100 have lymph node tuberculosis, 70 would be Xpert Ultra-positive and 0 (0%) would not have tuberculosis; 930 would be Xpert Ultra-negative and 30 (3%) would have tuberculosis. Xpert MTB/RIF (4 studies) Xpert MTB/RIF pooled sensitivity and specificity against composite reference standard were 81.6% (61.9 to 93.3) (377 participants; low-certainty evidence) and 96.4% (91.3 to 98.6) (302 participants; low-certainty evidence). Of 1000 people where 100 have lymph node tuberculosis, 118 would be Xpert MTB/RIF-positive and 37 (31%) would not have tuberculosis; 882 would be Xpert MTB/RIF-negative and 19 (2%) would have tuberculosis. In lymph node aspirate, Xpert MTB/RIF pooled specificity against culture was 86.2% (78.0 to 92.3), lower than that against a composite reference standard. Using the latent class model, Xpert MTB/RIF pooled specificity was 99.5% (99.1 to 99.7), similar to that observed with a composite reference standard. Rifampicin resistance Xpert Ultra (4 studies) Xpert Ultra pooled sensitivity and specificity were 100.0% (95.1 to 100.0), (24 participants; low-certainty evidence) and 100.0% (99.0 to 100.0) (105 participants; moderate-certainty evidence). Of 1000 people where 100 have rifampicin resistance, 100 would be Xpert Ultra-positive (resistant): of these, zero (0%) would not have rifampicin resistance; and 900 would be Xpert Ultra-negative (susceptible): of these, zero (0%) would have rifampicin resistance. Xpert MTB/RIF (19 studies) Xpert MTB/RIF pooled sensitivity and specificity were 96.5% (91.9 to 98.8) (148 participants; high-certainty evidence) and 99.1% (98.0 to 99.7) (822 participants; high-certainty evidence). Of 1000 people where 100 have rifampicin resistance, 105 would be Xpert MTB/RIF-positive (resistant): of these, 8 (8%) would not have rifampicin resistance; and 895 would be Xpert MTB/RIF-negative (susceptible): of these, 3 (0.3%) would have rifampicin resistance. AUTHORS' CONCLUSIONS: Xpert Ultra and Xpert MTB/RIF may be helpful in diagnosing extrapulmonary tuberculosis. Sensitivity varies across different extrapulmonary specimens: while for most specimens specificity is high, the tests rarely yield a positive result for people without tuberculosis. For tuberculous meningitis, Xpert Ultra had higher sensitivity and lower specificity than Xpert MTB/RIF against culture. Xpert Ultra and Xpert MTB/RIF had similar sensitivity and specificity for rifampicin resistance. Future research should acknowledge the concern associated with culture as a reference standard in paucibacillary specimens and consider ways to address this limitation
    corecore