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Genomic analyses of Mycobacterium tuberculosis
from human lung resections reveal a high
frequency of polyclonal infections
Miguel Moreno-Molina 1, Natalia Shubladze 2, Iza Khurtsilava2, Zaza Avaliani2, Nino Bablishvili2,

Manuela Torres-Puente1, Luis Villamayor3, Andrei Gabrielian4, Alex Rosenthal 4, Cristina Vilaplana 5,6,7,

Sebastien Gagneux 8,9, Russell R. Kempker10, Sergo Vashakidze2 & Iñaki Comas 1,11✉

Polyclonal infections occur when at least two unrelated strains of the same pathogen are

detected in an individual. This has been linked to worse clinical outcomes in tuberculosis, as

undetected strains with different antibiotic resistance profiles can lead to treatment failure.

Here, we examine the amount of polyclonal infections in sputum and surgical resections from

patients with tuberculosis in the country of Georgia. For this purpose, we sequence and

analyse the genomes of Mycobacterium tuberculosis isolated from the samples, acquired

through an observational clinical study (NCT02715271). Access to the lung enhanced the

detection of multiple strains (40% of surgery cases) as opposed to just using a sputum

sample (0–5% in the general population). We show that polyclonal infections often involve

genetically distant strains and can be associated with reversion of the patient’s drug sus-

ceptibility profile over time. In addition, we find different patterns of genetic diversity within

lesions and across patients, including mutational signatures known to be associated with

oxidative damage; this suggests that reactive oxygen species may be acting as a selective

pressure in the granuloma environment. Our results support the idea that the magnitude of

polyclonal infections in high-burden tuberculosis settings is underestimated when only

testing sputum samples.
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How Mycobacterium tuberculosis evolves during the infec-
tion and treatment of a patient and transmits is key to
understand phenomena like the spread of drug resistance.

So far, the diversity of the pathogen has been mostly studied from
sputum samples except for one study in the context of HIV/TB
co-infection1. However, individual sputum samples may under-
estimate the true bacterial diversity within the lung as they are
likely limited to reveal the coexistence of multiple M. tuberculosis
strains in the same patient. Generally, infections involving two or
more unrelated genotypes can be referred to as polyclonal (Fig. 1).
Polyclonal infections of M. tuberculosis complicate the diagnosis
and treatment of tuberculosis (TB), particularly when the
infecting strains differ in their antibiotic susceptibility; which can
lead to the total replacement of the susceptibility profile during
treatment or to heteroresistance2.

Polyclonal infections are also relevant to evaluate if and how an
initial TB infection protects from a second infection. Recent
experiments in macaques suggest that an initial infection is highly
protective against reinfection and disease caused by the same
M. tuberculosis strain3. However, whether the initial infection
protects against heterologous challenges with a different strain
is unknown. Until the advent of molecular epidemiology, the
dominant view was that primary TB episodes were due to
endogenous reactivation after years of latent infection. However,
progression to active disease occurs mainly in the first 2 years
after infection4, suggesting that many of the episodes of TB fol-
lowing prolonged exposures are not due to endogenous reacti-
vation but to reinfection. Molecular epidemiological studies also
show that in high-burden countries the rate of reinfection is

higher than previously recognized5. This is probably also true for
superinfections with strains resistant to the treatment being used
against the first infection.

The difficulty in identifying polyclonal infections is particularly
pronounced in high-burden MDR-TB countries. Often, similar
genotypes are responsible for a large proportion of recent TB
transmission, making it more difficult to distinguish between
these closely related strains when they coexist in the same
patient6. In addition, in the context of drug resistance, patterns of
within-host diversity in sputum cultures may be biased towards
drug-resistant genotypes with high fitness. As a result, sputum-
based cultures may not reflect the true extent of the pathogen
diversity inside the patient’s lung. For obvious reasons, studying
M. tuberculosis directly from the lung is not usually possible.
There are however a few studies, some of them based on post-
mortem biopsies, which suggest that the diversity of M. tuber-
culosis within the host is higher than what can be detected in
sputa1,7. In addition, bacterial diversity within the lungs of TB
patients may affect clinical outcomes as TB drugs are known to
differ in their capacity to penetrate into the different types of lung
lesions8 or into the variable immune microenvironments of
individual granulomas9–11. Therefore, the role of within-host
diversity in general and of polyclonal infections is pivotal to TB
control as it has implications at many levels12. First, effective
treatment can be compromised13. Second, public health inter-
ventions may need adjustments in settings with high rates of
exogenous reinfection13. And third, there is a need to understand
the role of M. tuberculosis strain variation in the context of new
vaccines and the factors behind the limited success of the existing
BCG vaccine14,15.

The country of Georgia has a yearly incidence of 80 TB cases
per 100,000 population. Out of those, 14 are MDR-TB cases
(17.5%). Importantly, 12% among all new cases are MDR-TB
indicating that transmission plays an important role in the epi-
demic of MDR-TB in Georgia16,17. Like in many countries of the
former Soviet Union, adjunctive surgical resections are sometimes
performed in patients not responding to treatment18,19. Utilizing
these resected lung tissue samples, we studied the diversity of M.
tuberculosis within different parts of cavitary lesions and com-
pared it to theM. tuberculosis diversity seen in sputum samples of
the same patients. We achieved this using culture-derived bulk
sequencing of the bacteria and detecting minority variants
down to 3%.

In this work, we show a high frequency of polyclonal infections
and important differences between patients in terms of genetic
diversity in granulomatous lesions. Some of these differences are
driven by an increased mutational supply mediated by host-
derived reactive oxygen species (ROS). In most patients infected
with multiple strains, these strains differ in their drug resistance
profiles. Furthermore, the high genetic distance observed between
two strains infecting a given patient suggests an important role of
strain genetic diversity in establishing a polyclonal infection. Our
results represent a challenge for treatment and control of TB in
the setting and highlight a possible limitation of new vaccines
against TB.

Results
A high frequency of polyclonal infections in MDR-TB patients
from Georgia. A total of 370M. tuberculosis cultured isolates from
275 patients were included in this study (Fig. 2a). Lung surgical
samples from 18 patients were also available. For nine patients, two
samples were analyzed from sputum and caseum, respectively, and
for nine others, we analyzed multiple samples from cavitary
granulomatous lesions, samples from remote tubercular foci, and
visually healthy lung tissue surrounding the cavity. In addition, for

Fig. 1 Theoretical scenarios for Mycobacterium tuberculosis polyclonal
infections. Blue represents healthy patients and red represents infected
patients. a A transmission event of two strains from an infected individual
to another result in two different genotypes being present in the same
space or sample. b An infected patient on treatment clears infection and
gets infected again resulting in two different genotypes present over time.
c An already infected patient get superinfected with a different genotype.
The second genotype will either coexist with the first one or replace it.
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38 patients, we analyzed two consecutive cultures from sputum
samples. In terms of drug resistance profiles, patient samples were
16% pan-susceptible (44), 2% mono-resistant (3 mono-INH, 2
mono-SM, 1 mono-EMB), 2% poly-resistant (5), 41% MDR (112),
24% pre-XDR (66) and 15% XDR (42).

In regards to the sputum and lung tissue M. tuberculosis
clinical isolates from patients undergoing adjunctive surgical
resection, a genome-based phylogeny of all bulk-sequenced
cultures revealed that for seven out of eighteen cases, samples
from the same patient did not cluster together (Fig. 2b). This
strongly suggested the presence of polyclonal infections. Patients
harboring different strains in different samples become evident
when considering pairwise genetic distances between these
strains. It has been suggested that >10 SNPs between isolates of
the same patient are unlikely to emerge by clonal diversification
from a single M. tuberculosis genotype20. For all seven patients in
which the isolates did not cluster together, the distance between
the genotypes was much higher than 10 SNPs (range 105 to 1132
SNPs, Table 1). By contrast, in the eleven patients whose isolates
clustered together, the pairwise SNP distance was between 0 and 2
SNPs (Wilcoxon Rank Sum Test; W 0, p-value 0.001). For
example, the caseum isolate from patient G019 clustered 120
SNPs apart from the sputum isolate of the same patient. Extreme
examples were patient G036 or G327, in which the sputum and
the caseum isolates belonged to different lineages (L2 and L4,
more than 1100 SNPs apart). For three patients, the isolates were
not only located in different parts of the phylogeny but were also
assigned to different transmission clusters (Supplementary Fig. 1).
For patient G324, whose surgical isolates clustered with the
caseum isolate from patient G327, the sputum isolates clustered
with patient G005 and G312 sputum isolates. Patients G019 and
G036 also had paired isolates clustering independently with other

isolates in the phylogeny instead of with each other. In total, we
found 6 out of 7 polyclonal infection surgical patients involved in
recent transmission clusters (Supplementary Fig. 1). These values
suggest that superinfections are common among the MDR-TB
population of this setting.

TB patients undergoing lung surgery show complex infection
scenarios. For nine surgery patients, several bacterial cultures
from different parts of the cavitary lesion could be analyzed in
detail, including caseum (C), inner wall (I), external wall (E),
remote nodule (N), and surrounding healthy tissue (H), in
addition to the diagnostic sputum culture (S). Analysis of the M.
tuberculosis genomic diversity within and around lesions showed
very different patterns across patients (Supplementary Figs. 2 and
3). Detailed descriptions of the surgical cohort are provided in
Supplementary Data 1.

For three surgery patients, the situation was even more
complicated. For those patients, we found instances of polyclonal
infections of two unrelated genotypes not only between isolates of
the same individual but also within the same lesion. For instance,
patient G039 harbored two genotypes in different parts of the
same lesion (C, I, E, H), while the nodule (N) and sputum (S)
samples harbored a single genotype. Deconvolution of the two
genotypes present in the caseum isolate (see “Methods”) revealed
that the genotype absent from the nodule and sputum belonged
to a different sublineage and was 105 SNPs apart. A similar
phenomenon was observed in patient G240, where two genotypes
coexisted in the granuloma center, but only one was present in
the sputum isolate and clustered with another patient’s sputum
isolate. Finally, patient G033 also showed evidence of two
genotypes belonging to different L4 sublineages, coexisting in the
nodule and healthy tissue samples.

Fig. 2 Phylogenetic diversity in Georgia and identification of polyclonal infections. a Phylogeny of all Georgian M. tuberculosis isolates included in this
study (L2 in blue, L4 in red). Surgery patients are highlighted in different colors. Drug resistance profiles are illustrated in the inner band (see legend) and
transmission clusters represented on the outer band were estimated using a 10 SNP phylogenetic distance threshold. Branch lengths and bootstrap values
not represented. b Curves connecting patient samples located in distant places of the phylogeny, suggesting polyclonal infections. The phylogeny and
associated data can be browsed at the ITOL website (https://itol.embl.de/tree/161111218247381131580915038).
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Taken together, our results show that seven out of the
eighteen surgery patients (39%) showed evidence of infection by
two phylogenetically unrelated genotypes, either in the same
sample or in separate samples (Table 1). To compare the high
percentage of polyclonal infections in our surgical dataset with
the percentage expected when using only a single sputum
diagnostic sample, we scanned for possible polyclonal infections
in 218 sputum culture-positive patients from the country of
Georgia. As only one sample per case was available we could
only scan for cases of mixed infection. We used two different
methods to identify the co-existence of two different genotypes
in single sputum samples, including a phylogenetic-based
approach specifically designed for this analysis (see “Methods”).
In total, we identified 11/218 (5%) likely cases of co-existence in
these patients based on a single sputum sample. Supporting this
result, when we only took into consideration the sputum isolates
from surgery patients no mixed infections were detected. This is
in contrast with findings in surgical samples where we identify
three cases in which two genotypes co-existed (17% in surgical
samples vs. 5% in sputum samples from the general population;
chi-square 4.39, p-value= 0.036). To increase the power to
detect additional polyclonal infections in the general population,
we analyzed a set of 38 patients with two consecutive sputum
samples (Supplementary Table 1) collected from days to months
apart (range 1–595 days). In total, we identified seven patients
out of the 38 (18.4%) with evidence of polyclonal infection at
some point during their TB disease. This was lower than the
frequency of polyclonal infections in the surgical samples (39%)
but higher than in the single diagnostic sputum samples (5%).
Despite the study limitations, this suggests that the real extent of
polyclonal infections cannot be accurately estimated from a
single sputum sample.

We chose patient G039 to illustrate how complex infection
and transmission patterns can be in a high-burden MDR-TB
setting. This patient showed a polyclonal infection of two
genotypes in the caseum, the inner and external wall as well as
in the healthy tissue, but not in the remote nodule or sputum
(Fig. 3a). A detailed analysis of the SNP frequencies suggested
that there were two genotypes coexisting in the caseum at a ratio
of 80:20 (genotype1:genotype2). Tracking of variable positions
across samples of the patient revealed that this ratio varied. The

proportion of genotype 1 decreased as we moved out of the
caseum until reaching a ratio of nearly 50:50 in the external
walls and healthy tissue. The situation was reversed in the
remote nodule where genotype 2 was fixed at 100% frequency.
The sputum of the patient also contained genotype 2 at a 100%
frequency. Deconvoluting these two genotypes were challenging
as both belonged to the same lineage 2 sublineages. We could
extract the genetic base of genotype 2 from the nodule as it
represented 100% of the culture but genotype 1 always existed as
a mixture with genotype 2 in the other samples. To deconvolute
genotype 1, we assigned as a fixed SNP any position that was in
the caseum sample at above 75% frequency, thus reflecting the
expected frequency of SNPs associated with genotype 1.
Comparison with genotype 2 corroborated that both genotypes
belonged to the same lineage but different sublineages (2.2.9 and
2.2.10), being only 105 SNPs apart. The frequencies of genotype
1 and genotype 2 correlated with resistance mutations to several
antibiotics at the corresponding frequencies (Fig. 3b, c). Several
of the resistance mutations were the same in both genotypes,
including those for isoniazid, rifampicin, ofloxacin, and
kanamycin. The combined frequency of different resistance
mutations to ethambutol and streptomycin across the two
genotypes resulted in 100% of the culture is resistant to those
drugs. For other drugs like pyrazinamide, resistance mutations
were only found in genotype 1.

Patient follow-up treatment can be compromised by the
polyclonal infection. To analyze the role of polyclonal infections
in drug resistance, we used the available DST results for the
surgical cohort’s samples. First, we explored whether there was
variability within a patient in phenotypic DST results. In 13 out of
the 18 surgical patients, the DST results did not change across
sites even when the sputum sample was taken into account. In
five patients, the DST profiles differed across samples. Sometimes
the difference involved only one drug like OFX in G019 but on
other occasions like patient G327, the DST profile was fully
reversed when comparing the caseum and the sputum sample
(from pre-XDR to pansusceptible in this case). In other instances,
we had polyclonal infections like patient G033, in which the mix
between the two genotypes in H and N samples (susceptible+
pre-XDR) resulted in an overall profile of pre-XDR masking the

Table 1 Summary of M. tuberculosis genotypes found in the surgical cohort.

Patient Infection G1 Lin. G1 DRP G2 Lin. G2 DRP Dist. C I E H N S

G018 Clonal L2.2.10 XDR – – 0 G1 G1 G1 G1 G1 G1
G021 Clonal L2.2.10 Pre-XDR – – 0 G1 – – – – G1
G023 Clonal L4.2.1 Sus. – – 1 G1 – – – – G1
G025 Clonal L2.2.10 Pre-XDR – – 0 G1 – – – – G1
G031 Clonal L2.2.10 Pre-XDR – – 2 G1 G1 G1 – – G1
G032 Clonal L2.2.9 MDR – – 0 G1 – – – – G1
G034 Clonal L2.2.10 Pre-XDR – – 0 G1 G1 G1 G1 G1 G1
G035 Clonal L.2.2.9 Pre-XDR – – 0 G1 G1 G1 G1 G1 G1
G085 Clonal L2.2.10 Pre-XDR – – 2 G1 G1 G1 G1 G1 G1
G330 Clonal L2.2.10 Sus. – – 0 G1 – – – – G1
G335 Clonal L2.2.10 Sus. – – 0 G1 G1 G1 G1 G1 G1
G033 Polyclonal L4.3.3 Pre-XDR L4.2.1 Sus. 611 G1 G1 G1 M M G1
G039 Polyclonal L2.2.9 Pre-XDR L2.2.10 Pre-XDR 105 M M M M G2 G2
G240 Polyclonal L4.8 Sus. L4.8 Sus. 162 M – – – – G1
G019 Polyclonal L2.2.10 MDR L2.2.10 Pre-XDR 120 G1 – – – – G2
G036 Polyclonal L2.2.9 MDR L4.8 Sus. 1132 G1 – – – – G2
G324 Polyclonal L2.2.10 Sus. L2.2.10 Pre-XDR 128 G1 G1 G1 G1 G1 G2
G327 Polyclonal L4.3.3 Sus. L2.2.10 Pre-XDR 1116 G1 – – – – G2

Lineage (Lin.) and drug resistance profile (DRP) of the different genotypes (G1, G2), as well as their genetic distances (Dist.) are shown.
Genotype locations are indicated with: G1 genotype 1, G2 genotype 2, M mix, – no sample available.
C caseum, I inner wall, E external wall, H healthy tissue, N nodule, S sputum.
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second genotype. Although the number of patients was low, three
out of five patients with discrepancies in DST vs. genomic pre-
diction had a polyclonal infection, suggesting that these infections
can mislead individual treatment of MDR-TB patients. For a
comparison of phenotypic and genotypic results as well as
identification of novel drug resistance markers see Supplementary
Note 2.

Another complication might result from the replacement over
time of one strain by another, which may compromise the
treatment if no additional DST is done during follow-up. In
support of this notion, in all four patients harboring different
strains in temporally separated samples (Table 1), the DST profile
changed for several drugs. This included cases that were
susceptible in the first isolate but MDR/XDR in the second
isolate or vice versa, like patients G324 or G327. This data shows
that treatment based on the results from one diagnostic sample
can be misleading and suggests the need for sequential testing of
isolates under programmatic conditions, especially in settings
with a high MDR-TB burden such as the country of Georgia.

Diversity within and around lesions reflects host micro-
environment pressures. For those patients with both surgical and
sputum samples and with no polyclonal infection detected, we
analyzed the M. tuberculosis genetic diversity across their sam-
ples. The overall diversity of M. tuberculosis within patients was
well represented in sputum samples when compared to the
caseum sample (correlations >90%). We then calculated the
number of bacterial SNPs exclusive to each sample. These are
SNPs that have accumulated since the divergence of the sample
from the closest isolate in the phylogeny. In general, patients with
a high number of exclusive SNPs in the lesions also had a high
number of SNPs in the sputum (R2= 0.9623 between cavity
centers and corresponding sputa using exclusive SNPs and

excluding G021 which showed a high diversity only in sputum).
Thus, the general assumption that the M. tuberculosis diversity in
sputum samples is only a subset of the within-patient diversity is
not always true. Indeed, we saw patients in which the sputum
harbored exclusive SNPs not found in the surgical samples and
vice versa. TB patients widely differed in the amount of within-
host MTB genomic diversity, with approximately half of the
patients harboring almost no MTB diversity (e.g., G031, G034,
G035 with no low-frequency SNPs; Fig. 4a and Supplementary
Fig. 3), while others showed a large diversity across sputum and
surgical samples (e.g., G023, G025 with >600 low-frequency
SNPs; Fig. 4a and Supplementary Fig. 3). However, the com-
parison between sputum and surgery samples must be taken with
caution as the sputum and surgical samples were obtained at
different time points and may also reflect the sampling of dif-
ferent lesions.

Several selective forces, including the host response and
antibiotic treatment, may affect the diversity within granulomas
from the time of diagnosis to the time of surgery. It has been
suggested that the host immune system may exert a mutational
pressure on the infecting bacteria through the production of ROS.
This has been demonstrated in single colony analyses of cultured
sputum samples showing that an elevated mutational supply can
be identified in immunocompetent individuals but not in HIV-
positive individuals21. A hallmark of an elevated mutational rate
due to ROS is a mutational signature associated with oxidative
damage (increased changes C > T and G > A)22. It could be
expected that such a ROS mutational signature was amplified in
surgical samples compared to sputum. As our study was not
based on single-colony sequencing but on bulk sequencing, we
reasoned that identifying variants present in a few colonies in
culture should roughly correlate with variants at very low
frequency in bulk culture sequencing. Thus for this analysis, we

Fig. 3 Dynamics of polyclonal infection with two different strains across the granuloma. a Descriptive summary of patient G039 genotypes frequencies
and distribution across the lesion. The PCA graph illustrates their separation: while the X-axis explains ~90% of the variance, leaving N and S apart from the
rest, the Y-axis only explains ~5%, mainly defined by low-frequency variants not shared by N and S (due to reading depth differences). b Antibiotic
resistance-associated mutations across surgical and sputum samples for the two co-existing genotypes. c Deconvolution of the two genotypes by
frequency patterns clustering. Resistance-associated variants from (b) are represented in purple. Unassigned subpopulations (in orange) are low-frequency
variants that we cannot assign to any of the two genotypes and shared fixed variants (in green) are common to both genotypes. C caseum, I inner wall, E
external wall, H healthy tissue, N nodule, S sputum. Source data are provided as a Source Data file.
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focused on variants with frequency lower than 5% for samples
with enough depth of coverage and excluding patients showing
polyclonal infection as frequencies in those cases are not
straightforward to interpret (total eligible patients n= 10). Our
analysis revealed that, as hypothesized, surgical samples showed a
stronger ROS mutational signature compared to the sputum
samples from the same patients (21% vs. 8.6%, pooled analysis,
Fig. 4b; chi-square 14.5, p-value < 0.0001). As the sputum and
surgical samples were obtained at different time points, we also
analyzed patients with serial sputum samples to determine the effect
of time on the diversity observed in sputum. While there was an
effect of time (S1 3% vs. S2 5.9%; chi-square 22.3 p-value < 0.0001),
the magnitude of the ROS signature in serial samples was similar to
that seen in sputum samples from surgical patients (Fig. 4b) but
significantly lower than in the surgical samples (chi-square p-value
< 0.0001 for all comparisons against surgical samples). Some
patients had stronger ROS signatures than others (Fig. 4c; 5 out of
10 significant at the individual level, G021, G023, G025, G031,
G032; chi-square p-value < 0.05). This is in accordance with results
by Liu and colleagues21, where 4 out of 18 cases showed a
significant increase in ROS-associated mutations. Thus, our results
suggest that the granuloma microenvironment can increase the
mutational supply for transitions during the within-host evolution
of M. tuberculosis.

Discussion
Studies on within-host diversity of M. tuberculosis are based on
cultured samples and very few on non-sputum samples, limiting
our capacity to understand diversity patterns at the site of
infection. In this study, we analyzed an 18-patient cohort, most of
the MDR to XDR-TB cases, with available lung surgical samples
from Tbilisi (Georgia). We performed bulk sequencing of cul-
tured bacteria from the surgical resections and sputum isolates of
every patient, finding an elevated percentage of polyclonal
infections with an impact on drug resistance in the surgical
cohort (39%), which cannot be attained by single sputum sam-
ples. In addition, we demonstrate that patterns of genetic diversity
differ within lesions and across patients suggesting a role of host
immune microenvironments.

The surgical cohort showed seven out of the eighteen patients
(39%) with evidence of infection by two phylogenetically unre-
lated genotypes, either in the same sample or in separate samples.
This represents a high percentage when compared to the 5%
found in single sputum patients of our dataset and percentages
described by others2. Three surgical patients showed true mixed
infections (multiple genotypes co-existing) and four are likely the
results of superinfections due to multiple transmission events.
The high rate of polyclonal infections in these patients suggests
deficiencies in infection control in the setting23 and agrees with
epidemiological and model data showing that repeated exposure
to infection as seen in high-burden settings increases the risk of
reinfections, disease progression, and outbreaks23,24. In addition,
polyclonal infections in the surgical cohort usually involve strains
with different drug resistance patterns (5 out of 7 cases), a fact
that can hamper successful treatment if not assessed correctly25.
There are several studies showing that infection with multiple
strains resulted in a poor treatment outcome since the presence of
any undetected resistance during standard treatment can propel
the acquisition of further drug resistance13. Importantly, in our
results, polyclonal infections change, and many times fully revert,
the drug resistance profile of the patients. Thus, follow-up DST
samples should be implemented in these settings for better
patient management.

Figure 1 shows the theoretical scenarios to explain the natural
history of infection for these patients. The fact that in several
cases the second isolate is in a transmission cluster suggests that
superinfection is one of the most common mechanisms. How-
ever, we cannot be sure if two strains were already infecting at
baseline while only one is detected in sputum as we do not have
access to lung samples before treatment. Similarly, we cannot test
the hypothesis suggested from mice experiments that a secondary
infection drives the progression of an asymptomatic primary
infection via immune response or by expression of resuscitation-
promoting factors13,26. However, our results contribute to the
evidence from mice data26 (but not from macaques3) that rein-
fection with a second strain can be common after a primary
infection under certain circumstances and calls to re-evaluate the
natural history of TB in settings with the rampant transmission.

Fig. 4 Impact of the granuloma microenvironment on within-host diversity. a Average diversity of each patient’s surgical samples (measured by a
number of vSNPs and excluding polyclonal infections, n= number of independent surgical samples available for each patient, range 1–3). Data are
presented as mean values ± SD. b Pooled comparisons of ROS signature in the different datasets. Categories include surgery specimens, sputum samples
from surgery patients, and serial sputum samples from the same patient. c Individual values of caseum and sputum from surgery patients. Purple lines
connect those patients whose differences are statistically significant by the two-tailed X2 test. Source data are provided as a Source Data file.
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The extent of polyclonal infections also has consequences to
understand the protective potential of vaccines. Recent in vivo
reinfection experiments suggested that the first episode of TB was
more protective against a second episode than previously
thought6. However, our results suggest that in a high-burden
setting this might not be the case, and future studies designed to
corroborate this observation will be needed. Differences may be
related to how well the experimental set-up recapitulates natural
infection in such settings. In the experiments on macaques, the
same strain was used for re-challenge3. By contrast, in our dataset
we frequently observe different strains, usually from different
(sub-)lineages, infecting the same patient. In fact, we did not see
polyclonal infections with strains less than 100 SNP apart despite
our phylogenetic approach being designed to identify cases
up to 20 SNP apart. This raises the possibility that previous
infection might indeed protect against superinfection with the
same or a very similar strain, as observed in the macaque model.
The differences with animal experiments may also be related to
the nature of the re-challenge, as in TB transmission hotspots,
the exposure to second infections is recurrent27. However, co-
morbidities and social determinants may also play an important
part in the susceptibility of the host to second infections. Lastly,
many clinical trials and vaccine studies use sputum as their basis
for distinguishing between relapse and reinfection and our results
suggest that it may be a poor correlate to ascertain lung poly-
clonal infection.

Beyond multiple genotypes, analysis of the genomic diversity
within and around lesions showed very different patterns across
patients. Some showed almost no diversity while others were
highly diverse. In some cases (notably G-018) the distribution of
drug resistance variants suggests gradients of antibiotic con-
centration as having been described in recent literature8,28,29. The
fact that this pattern is not observed in all patients, may be
explained by different pharmacodynamics, but also by the time
difference until resection between patients as the granuloma walls
get hardened over time. This would limit the penetration of drugs
inside, which could affect selective pressure and thus the diversity
we are able to recover from genomic data8. But drug pressure is
not the only selective force that the pathogen encounters during
infection. It is known that different immune microenvironments
exist within granulomas30. Chief among macrophage defense
mechanisms is the production of reactive oxygen and nitrogen
species31. Looking at sputum cultures, it has been proposed that
an unintended effect of ROS is to increase the mutation rate of
the bacteria21. Our data corroborate those results showing that
the mutational signature of ROS, i. e., increased number of
transitions, was overall enriched in surgery samples compared to
sputum samples. A recent study suggests that transition bias
is linked to the acquisition of drug resistance variants32. It is
thus tempting to link ROS-increased mutational supply to an
accelerated acquisition of drug resistance mutations. Combined
analyses of the bacterial population in the lung during infection in
humans and relevant animal models33, drug penetration and
pharmacodynamics28 and lesion imaging29 will help to better
understand the bacterial population diversity driven by host
pressures, how it is linked to the emergence and selection of drug-
resistant subpopulations and, ultimately, to relapses and treat-
ment failure in clinical settings.

Our results are necessarily limited by the characteristics of the
epidemiological setting and the patients undergoing surgery.
Most of the patients who underwent surgery had already been
diagnosed at least as MDR-TB and did not respond to treatment.
This population is characterized by substantial exposure to
multiple antibiotics, a higher frequency of prior TB disease, the
frequent presence of cavitary disease (associated with poor anti-
biotic penetration), and sometimes prolonged hospitalization that

can increase the risk of superinfection. In addition, diagnostic
sputum and surgical samples have several months time difference,
which limited some of our analyses, but we tried to assess the
effect of sampling time by comparing our surgical dataset with
the serial sputa dataset (Supplementary Table 1) in which the
time difference between samples is similar overall. Also, even
though we had access to surgery samples, analyses were done on
cultured samples and not directly on the surgery or sputum
sample which can impose different biases34. Finally, a possible
limitation of this study would be cross-contamination as an
explanation for the high frequency of polyclonal infections,
although we think it is highly unlikely for a number of reasons.
First, sample collection dates and processing dates from all
patients are not close in time thus they have not shared the same
space. Second, sample homogenization is carried out in a closed
special, disposable tubes so that samples cannot be mixed. Third,
genotypes match their DST phenotypes in nearly all cases,
arguing against a general contamination problem. Lastly, not all
polyclonal infections are in a transmission cluster and thus they
do not match any other strain processed in the laboratory.

In summary, we have shown that surgical lung resections
from TB patients reveal a more complete picture of the within-
patient diversity of M. tuberculosis compared to sputum sam-
ples. The high frequency of polyclonal infections found may be
related to the nature of our patient population, yet this allowed
us to study complex infection scenarios with the potential to
confound diagnosis and/or DST results, as in many cases the
two genotypes involved in the infection had different drug
resistance profiles. The surgery patients are often in a trans-
mission cluster suggesting that either there are uncontrolled
hotspots of transmission shared by MDR-TB patients, there is
increased host susceptibility to reinfection by different geno-
types, or both. The fact that polyclonal infections usually involve
strains of different lineages or sub-lineages suggests that vaccine
preclinical models must take into account the genetic diversity
of the bacteria to assess protection. Finally, as observed in
culture-based sputum studies1,25,35, there are profound differ-
ences in diversity between patients and here we show that those
differences can also be seen across regions of the cavitary lesions
and between patients. In some patients, differences are driven by
a mutational signature associated with ROS and by treatment
and suggest a link between immune and drug resistance selective
pressures. Overall, our results exemplify a challenge for tuber-
culosis treatment and control, highlighting our knowledge gap
on the natural history of the disease in certain settings and the
need for better patient follow-up in high burden MDR-TB areas
to halt the spread of resistant strains.

Methods
Sampling. We included 275 TB patients in this study (257 with diagnostic sputum
and 18 with paired sputum and lung tissue samples, Supplementary Data 1) with a
total of 370 M. tuberculosis clinical isolates from between 9 January 2013 and 20
March 2018 (see Fig. 5 for details on the surgical cohort). Sputum samples were
collected according to standard clinical practice. The surgical samples used in this
study were acquired within the framework of observational clinical study
NCT02715271, which is ongoing as of this publication date but no longer
recruiting, and results are reporting on primary outcome #3. Consent to publish
clinical information potentially identifying individuals was obtained. The main
indication for lung surgery was the persistence of abnormal lung lesions (pre-
dominantly cavities) identified on chest X-ray (13/18), both in DS (3/13) and
MDR/XDR-TB (10/13), despite good treatment adherence. Additional indications
for surgery included treatment failure (2.9%), complications of TB related to
pulmonary hemorrhage, spontaneous pneumothorax, or empyema36. Immediately
after lung resection, samples were removed from the following zone of obtention:
cavity center (C), cavity internal wall (I), cavity external wall (E), visually healthy
tissue around the cavity (H) and nodule (N), placed in sterile tubes and sent to the
National Center for Tuberculosis and Lung Disease microbiological laboratory for
processing. In total, we collected 219 single sputa, 38 pairs S1–S2 (serial sputa), 9
pairs C–S (caseum–sputum), and 9 complete surgical sets (C, I, E, H, N, S).
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Culture and drug susceptibility testing. Resected tissue samples were homo-
genized using Minilys homogenizer, placed in both LJ and BACTEC 960 MGIT™
culture, and processed as per the manufacturer’s instructions. Sputum samples
were also cultured in both media. All clinical isolates were confirmed for M.
tuberculosis complex (MTBC) using the standard microbiological method37,38. All
isolates underwent drug susceptibility testing (DST) for first and second-line drugs
in both solid (LJ) with increasing drug concentrations and liquid media BBL®

MGIT™, as recommended by the manufacturer.

DNA extraction and sequencing. For both sputum and resected tissue cultures,
after reaching sufficient bacterial growth in the LJ medium, plates were thoroughly
scraped to maximize diversity recovery for bulk sequencing. DNA extraction was
performed by the standardized protocol in the BSL-2+ laboratory from the AFB
positive culture. In short, bacteria were heated at 80 °C for 20 min, centrifuged, and
resuspended in TE buffer. Lysozyme, SDS, and proteinase K were added in
sequential incubations. DNA was precipitated using chloroform-isoamyl alcohol
and isopropanol and resuspended in TE buffer39. When there was no sufficient
growth in LJ, the CTAB/chloroform method was used for DNA extraction from
1mL of MGIT culture. The quality and quantity of DNA were analyzed with the
help of spectrophotometers (Thermo Scientific NanoDrop 2000 and Qubit 3.0).
Extracted DNAs were sent for whole-genome sequencing to Broad Institute, C-
PATH, TGen North, or Tuberculosis Genomics Unit (IBV-CSIC). The average
sequencing depth for this study was 141X. The average sequencing depth for
surgical samples was 267X.

Bioinformatic analysis. Read preprocessing was done using fastp40 to scan reads
and trim low-quality ends with a mean window quality <20. We then used
Kraken41 to taxonomically classify reads by means of a custom database, only
keeping MTBC sequences to avoid false variants arising due to contaminant DNA.
Filtered reads were mapped with BWA42 to a predicted MTBC ancestor reference
sequence43 using default parameters, and processed using samtools44 and Picard45.

After that, we scanned for optical and PCR duplicates to remove them, as this helps
to reduce the number of artifactual variants in low-frequency ranges. Variant
calling for sputum samples was carried out using the software and parameters from
the calling module of the pipeline validated for sputum sample cultures at the IBV-
CSIC (available at https://gitlab.com/tbgenomicsunit/ThePipeline).

For a robust variant calling in surgery samples, we used three different variant
callers (VarScan246, GATK’s HaplotypeCaller46,47, LoFreq48) and integrated SNPs
reported by at least two of them to get a high-confidence list of low-frequency
variants. VarScan2 was run with parameters “pileup2snp sample.pileup—min-
coverage 20—min-reads2 4—min-avg-qual 20—min-var-freq 0.01—min-freq-for-
hom 0.9—strand-filter 1”, GATK was run with parameters “-T HaplotypeCaller -R
ref.fasta -I sample.bam -o sample.vcf—min-base-quality-score 20 -ploidy 1” and
LoFreq was run with parameters “call-parallel—pp-threads 12 -f ref.fasta -o sample.
vcf sample.bam” and “filter -i sample.vcf -v 20 -A 0.01 -Q 20 -o filtered.vcf”.

From the initial list of variants, we applied a mapping filter that discarded
variants that arose in repetitive genomic regions like the PE/PPE families or
phages49. To establish a threshold that discarded additional false variants, we
performed a synthetic read simulation. Using the ART software package50, we got
the quality distribution and error profiles of our samples (using
art_profiler_illumina with default parameters), and simulated 100 sequencing runs
with the data (art_illumina -p −1 profile.txt -2 profile.txt -na -iref.fasta -l 150 -f
1000 -m 280 -s 137 -o out.fas). By analyzing simulations with the same pipeline, we
defined a ~3% minimum frequency threshold to validate a variant in surgery
samples. In addition, we extended our mapping filter to new regions that showed
high-frequency SNPs in the simulations and were due to systematic mapping errors
to the predicted ancestor, especially in Lineage 2 strains (see Supplementary Data 2
for a list of discarded genomic features).

Phylogenetic and population genetics analyses. A maximum-likelihood phy-
logeny of the 370 samples in the dataset was constructed using IQ-TREE 251 from
an alignment with gaps and no resistance SNP positions (run parameters: “-m GTR

Fig. 5 Details on the surgical cohort. a Sampling sites for the surgical cohort. b Timeline of key events for the surgical cohort. Treatment periods are
depicted in red, sputum samples date in blue points, and surgical samples date in green points. Starting case definition and treatment outcome are also
represented. Source data are provided as a Source Data file.
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-bb 1000”, meaning the use of a general time-reversible model with unequal rates
and unequal base frequencies, plus 1000 ultrafast bootstrap replicates). In addition,
an NJ phylogeny was constructed from the same alignment using MEGA52 and
phylogenetic Hamming distances between pairs of samples were extracted by
parsing the branch lengths from the tree using Python’s ete3 toolkit53.

We parsed SNP files by means of a custom Python script to obtain summary
tables for each patient and a general one collecting information about the different
numbers of fixed (fSNPs) and variable SNPs (vSNPs). All figures illustrating
diversity across sites by the patient were produced using R54 and the ggplot2
package55. For comparisons within a patient’s samples, we analyzed every SNP in
their samples and calculated the differences. This was performed by means of an
in-house Python script that works with the SNP files for every patient, analyzing
them sequentially and establishing the population dynamic for every variant based
on their presence/absence and frequency, obtaining stable, sporadic, ascending, or
descending dynamics. The data were plotted using R and the ggplot2 package as
well. For multi-sample patients, PCAs were produced with a matrix of SNP
frequencies across all samples and the R’s affycoretools package using the function
“plotPCA” for the first two principal components. We also calculated the
percentage of explained variation of these two principal components using the
“prcomp” function.

Prediction of WGS-DST profiles and comparison with culture DST. Using the
SNPs obtained from the analysis of genomic data, we performed an antibiotic
resistance prediction for every sample. For this, reliable catalogs of resistance-
associated variants were used, namely PhyResSE56 and ReSeqTB57 databases. We
also considered as likely resistance variants any small INDEL present in genes
commonly associated with antibiotic resistance. Once the predictions were
obtained, we systematically compared them to the available phenotypic DST results
to calculate matches and mismatches in the surgery patients dataset. We then
computed sensitivity and specificity based on these coincidences and discrepancies.

Identification of polyclonal infections. Identification of polyclonal infections
depends on the distribution of the different genotypes among patients samples
(Fig. 1). When two genotypes are in two samples of the same patient, phylogenetic
and genetic distances can be used to differentiate them. This happens mostly in
superinfection cases where one strain prevails over the other. In contrast, when the
different genotypes are in one sample, as it happens when both genotypes coexist,
then deconvolution methods have to be applied to separate them before calculating
their genetic distance. Consequently, we apply different methods to identify mul-
tiple strains depending on the number of samples available from a patient.

Identification of polyclonal infections in single samples
Phylogenetic identification. We reasoned that a single sample that shows evidence
of two different genotypes in the same isolate should have two characteristics in a
phylogeny. First, the sample should show no terminal branch length. Terminal
branch lengths represent private fixed SNPs only present in the sample. When
there is polyclonal infection no private SNPs are seen as any SNP not shared by the
two genotypes will be at intermediate frequencies. The second rule is that they
should not be part of a transmission cluster. It is known that transmission clusters
are enriched in strains that are zero SNPs apart from other strains in the same
cluster. Thus we required the candidate polyclonal infection to be at least 20 SNP
apart from another sample in the dataset. We developed a Python script able to
analyze a phylogeny, extract branch lengths using Python’s ete3 toolkit, calculate
phylogenetic distances between all samples, and identify terminal branches with 0
SNPs and more than 20 SNPs apart from any other isolate (Supplementary Fig. 4).
For this, we generated a phylogeny using a neighbor-joining approach and
Hamming distance, which represents branch length proportional to the absolute
number of observed differences. Given the low genetic diversity of MTBC and that
most positions are biallelic, Hamming distances reconstruct reasonably well the
overall phylogeny with respect to maximum likelihood and it is easier to parse. To
show the accuracy and the limit of detection of our approach we also generated in-
silico mixes of strains with increasing genetic distance between the pairs selected (5,
10, 15, 20, 25 SNP) and added them to our phylogeny to test the script.

Lineage markers identification. To test the coexistence of two strains in one sample,
we checked the appearance of any phylogenetic markers using a database from the
literature58,59 by means of a custom Python script. For samples that showed evi-
dence of more than one marker from different MTBC lineages at a significant
frequency (>5%), a polyclonal infection was called by this method and the esti-
mated proportion of the involved genotypes was defined by the approximate fre-
quencies of their markers.

Deconvolution of individual genotypes. For those cases in which we observed a
polyclonal infection in just one sample by either the phylogenetic or lineage
markers method, we established the proportions of the two strains in the sample
and deconvoluted both the individual genotypes if their difference was big enough
(e.g., 80/20 proportions, obtained by phylogenetic markers). By clustering the
frequencies of all variants matching the phylogenetic markers’ frequencies and
assigning them to their corresponding genotype, we could isolate both and

calculate their genetic distance. For this, we developed an in-house Python script
that uses a phylogenetic marker database from the literature58,59 and takes the SNP
file from the sputum sample to perform the detection and separation of both
strains, computing their genetic distance solely based on the number of differences.

Identification of polyclonal infections in multiple samples
Phylogeny manual inspection. To identify polyclonal infections happening in two
different samples from the same patient, we manually analyzed the phylogeny
looking for isolates of the same patient that seat in different parts of the phylogeny.
In addition, we recorded if samples were placed close enough to other patients
samples in the phylogeny to suggest a recent reinfection event involving those two
patients.

Analysis of frequency spectra differences. To make the detection process systematic
for those cases where we had at least two samples (e.g., sputum1-sputum2 or
sputum-caseum), we developed Python and R scripts to perform pairwise com-
parisons using SNP frequency differences obtained from the sample’s genomic
data, generating differences profiles that were plotted using ggplot2 package. We
generated simple XY plots in which every point is a single variant determined by
the frequencies in each of the samples involved in the comparison, and calculated
R2 as a measure of correlation (Supplementary Fig. 5). Polyclonal infections were
almost always associated with low values of this index, except in cases where they
were very subtle. We then proceeded to expand on the analysis generating a density
graph that plots the distribution of SNP differences between the profiles. That is, in
which range of frequencies is the comparison more enriched. This procedure
allowed us to better define clonal infections when the enriched range was at the
very low frequencies, and polyclonal infections when it was in the intermediate
variable frequencies or at high fixed frequencies (Supplementary Fig. 6).

Ethical approval. Ethical approval for the study (#892/01-17) was obtained from
the Institutional Review Board (IRB) of the National Center for Tuberculosis and
Lung Diseases (NCTLD). The study design and conduct complied with all relevant
regulations regarding the use of human study participants and was conducted in
accordance with the criteria set by the Declaration of Helsinki. All enrolled patients
or their legal guardians provided written informed consent prior to the inclusion in
the study. All patient data were de-identified before final data analysis. All study
staff during the study period had up-to-date GCP/GCLP certificates.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Sequencing files for all patients in the study are available at Bioproject accession codes
PRJNA480888 and PRJNA318002. Individual accession codes for every sample are
provided in Supplementary Data 1. All relevant data related to this work is available from
the authors. Additional details about patients are also publicly available at TB Portals60

(https://data.tbportals.niaid.nih.gov). Resistance prediction databases are available at
PhyResSE (https://bioinf.fz-borstel.de/mchips/phyresse) and ReSeqTB (https://platform.
reseqtb.org). Source data are provided with this paper.

Code availability
Custom code used in this study, along with example inputs and outputs are available at
https://gitlab.com/tbgenomicsunit/georgia-polyclonal (https://doi.org/10.5281/
zenodo.4604579)61. The code is available under Creative Commons Attribution 4.0
International.
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