76 research outputs found

    Visual stimuli modulate frontal oscillatory rhythms in a cortically blind patient: evidence for top-down visual processing

    Get PDF
    Objective We investigated neuronal correlates of faces versus non-faces processing in a cortically blind patient (TN) and a group of healthy age-matched controls in order to test electrophysiological correlates of the processing of pertinent stimuli in this patient. Methods An EEG paradigm was used, in which intact and scrambled faces were displayed on a screen. First, time-frequency transforms were conducted on the patients’ data alone. These oscillations were then compared to the frontal activity of six control participants. Results Post stimulus oscillatory modulations (synchronisation in theta and alpha frequency bands) of both intact and scrambled faces at frontal scalp sites were observed in TN. These modulations were different for correct and incorrect responses. A more important increase in the theta band for incorrect responses was observed. The oscillatory rhythms highlighted in blindsight and in frontal regions differ from the ones observed in control participants. Conclusion Despite the destruction of the visual cortex, oscillatory rhythms are not cancelled out but are shifted to anterior regions, revealing the activity of an alternate pathway for residual visual function. Significance The results provide evidence for a top-down cognitive control process in blindsight

    Time Pressure Modulates Electrophysiological Correlates of Early Visual Processing

    Get PDF
    BACKGROUND: Reactions to sensory events sometimes require quick responses whereas at other times they require a high degree of accuracy-usually resulting in slower responses. It is important to understand whether visual processing under different response speed requirements employs different neural mechanisms. METHODOLOGY/PRINCIPAL FINDINGS: We asked participants to classify visual patterns with different levels of detail as real-world or non-sense objects. In one condition, participants were to respond immediately, whereas in the other they responded after a delay of 1 second. As expected, participants performed more accurately in delayed response trials. This effect was pronounced for stimuli with a high level of detail. These behavioral effects were accompanied by modulations of stimulus related EEG gamma oscillations which are an electrophysiological correlate of early visual processing. In trials requiring speeded responses, early stimulus-locked oscillations discriminated real-world and non-sense objects irrespective of the level of detail. For stimuli with a higher level of detail, oscillatory power in a later time window discriminated real-world and non-sense objects irrespective of response speed requirements. CONCLUSIONS/SIGNIFICANCE: Thus, it seems plausible to assume that different response speed requirements trigger different dynamics of processing

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Implementation and analysis of temperature control strategies for outdoor photobiological hydrogen production

    No full text
    In applications of industrial biotechnology, maintaining an optimal temperature range is crucial for growth and proper functioning of microorganisms. For outdoor photobiological hydrogen production many parameters are beyond manipulation, hence effective control of temperature in photobioreactors is a challenge. In this work, an internal cooling system was designed and built, and its performance in outdoor tubular photobioreactors tested during summer months in Ankara, Turkey. Media with and without bacteria (Rhodobacter capsulatus YO3) were used. Countercurrent and co-current cooling modes were implemented to stabilize the reactor temperature. The temperatures were found to be strongly influenced by solar irradiation and ambient air temperature during daytime, and the surface temperature was found to be approximately constant along the reactor length. Heat effects on the external pumping and piping units were found to significantly increase the cooling duty. Counter-current cooling was found to be more effective compared to co-current cooling in controlling temperatures inside the reactor. High biomass growth rate (0.10 1/h) and hydrogen production rate (maximum 1.28 mmol/L/h) was achieved in the outdoor operations
    corecore