978 research outputs found
Levels of genetic polymorphism: marker loci versus quantitative traits
Species are the units used to measure ecological diversity and alleles are the units of genetic diversity. Genetic variation within and among species has been documented most extensively using allozyme electrophoresis. This reveals wide differences in genetic variability within, and genetic distances among, species, demonstrating that species are not equivalent units of diversity. The extent to which the pattern observed for allozymes can be used to infer patterns of genetic variation in quantitative traits depends on the forces generating and maintaining variability. Allozyme variation is probably not strictly neutral but, nevertheless, heterozygosity is expected to be influenced by population size and genetic distance will be affected by time since divergence. The same is true for quantitative traits influenced by many genes and under weak stabilizing selection. However, the limited data available suggest that allozyme variability is a poor predictor of genetic variation in quantitative traits within populations. It is a better predictor of general phenotypic divergence and of postzygotic isolation between populations or species, but is only weakly correlated with prezygotic isolation. Studies of grasshopper and planthopper mating signal variation and assortative mating illustrate how these characters evolve independently of general genetic and morphological variation. The role of such traits in prezygotic isolation, and hence speciation, means that they will contribute significantly to the diversity of levels of genetic variation within and among species
Concepts of mental disorders in the United Kingdom : Similarities and differences between the lay public and psychiatrists
BACKGROUND: The lay public often conceptualise mental disorders in a different way to mental health professionals, and this can negatively impact on outcomes when in treatment. AIMS: This study explored which disorders the lay public are familiar with, which theoretical models they understand, which they endorse and how they compared to a sample of psychiatrists. METHODS: The Maudsley Attitude Questionnaire (MAQ), typically used to assess mental health professional's concepts of mental disorders, was adapted for use by a lay community sample (N = 160). The results were compared with a sample of psychiatrists (N = 76). RESULTS: The MAQ appeared to be accessible to the lay public, providing some interesting preliminary findings: in order, the lay sample reported having the best understanding of depression followed by generalised anxiety, schizophrenia and finally antisocial personality disorder. They best understood spiritualist, nihilist and social realist theoretical models of these disorders, but were most likely to endorse biological, behavioural and cognitive models. The lay public were significantly more likely to endorse some models for certain disorders suggesting a nuanced understanding of the cause and likely cure, of various disorders. Ratings often differed significantly from the sample of psychiatrists who were relatively steadfast in their endorsement of the biological model. CONCLUSION: The adapted MAQ appeared accessible to the lay sample. Results suggest that the lay public are generally aligned with evidence-driven concepts of common disorders, but may not always understand or agree with how mental health professionals conceptualise them. The possible causes of these differences, future avenues for research and the implications for more collaborative, patient-clinician conceptualisations are discussed.Peer reviewedFinal Accepted Versio
Tissue Culture as a Source of Replicates in Nonmodel Plants: Variation in Cold Response in Arabidopsis lyrata ssp. petraea
While genotype–environment interaction is increasingly receiving attention by ecologists and evolutionary biologists, such studies need genetically homogeneous replicates—a challenging hurdle in outcrossing plants. This could be potentially overcome by using tissue culture techniques. However, plants regenerated from tissue culture may show aberrant phenotypes and “somaclonal” variation. Here, we examined somaclonal variation due to tissue culturing using the response to cold treatment of photosynthetic efficiency (chlorophyll fluorescence measurements for Fv/Fm, Fv9/Fm9, and FPSII, representing maximum efficiency of photosynthesis for dark- and lightadapted leaves, and the actual electron transport operating efficiency, respectively, which are reliable indicators of photoinhibition and damage to the photosynthetic electron transport system). We compared this to variation among half-sibling seedlings from three different families of Arabidopsis lyrata ssp. petraea. Somaclonal variation was limited, and we could detect within-family variation in change in chlorophyll fluorescence due to cold shock successfully with the help of tissue-culture derived replicates. Icelandic and Norwegian families exhibited higher chlorophyll fluorescence, suggesting higher performance after cold shock, than a Swedish family. Although the main effect of tissue culture on Fv/Fm, Fv9/Fm9, and FPSII was small, there were significant interactions between tissue culture and family, suggesting that the effect of tissue culture is genotype-specific. Tissue-cultured plantlets were less affected by cold treatment than seedlings, but to a different extent in each family. These interactive effects, however, were comparable to, or much smaller than the single effect of family. These results suggest that tissue culture is a useful method for obtaining genetically homogenous replicates for studying genotype–environment interaction related to adaptively-relevant phenotypes, such as cold response, in nonmodel outcrossing plants
Do the same genes underlie parallel phenotypic divergence in different Littorina saxatilis populations?
Parallel patterns of adaptive divergence and speciation are cited as powerful evidence for the role of selection driving these processes. However, it is often not clear whether parallel phenotypic divergence is underlain by parallel genetic changes. Here, we asked about the genetic basis of parallel divergence in the marine snail Littorina saxatilis, which has repeatedly evolved coexisting ecotypes adapted to either crab predation or wave action. We sequenced the transcriptome of snails of both ecotypes from three distant geographical locations (Spain, Sweden and United Kingdom) and mapped the reads to the L. saxatilis reference genome. We identified genomic regions potentially under divergent selection between ecotypes within each country, using an outlier approach based on FST values calculated per locus. In line with previous studies indicating that gene reuse is generally common, we expected to find extensive sharing of outlier loci due to recent shared ancestry and gene flow between at least two of the locations in our study system. Contrary to our expectations, we found that most outliers were country specific, suggesting that much of the genetic basis of divergence is not shared among locations. However, we did find that more outliers were shared than expected by chance and that differentiation of shared outliers is often generated by the same SNPs. We discuss two mechanisms potentially explaining the limited amount of sharing we observed. First, a polygenic basis of divergent traits might allow for multiple distinct molecular mechanisms generating the same phenotypic patterns. Second, additional, location-specific axes of selection that we did not focus on in this study may produce distinct patterns of genetic divergence within each site
(Micro)evolutionary changes and the evolutionary potential of bird migration
Seasonal migration is the yearly long-distance movement of individuals between their breeding and wintering grounds. Individuals from nearly every animal group exhibit this behavior, but probably the most iconic migration is carried out by birds, from the classic V-shape formation of geese on migration to the amazing nonstop long-distance flights undertaken by Arctic Terns Sterna paradisaea. In this chapter, we discuss how seasonal migration has shaped the field of evolution. First, this behavior is known to turn on and off quite rapidly, but controversy remains concerning where this behavior first evolved geographically and whether the ancestral state was sedentary or migratory (Fig. 7.1d, e). We review recent work using new analytical techniques to provide insight into this topic. Second, it is widely accepted that there is a large genetic basis to this trait, especially in groups like songbirds that migrate alone and at night precluding any opportunity for learning. Key hypotheses on this topic include shared genetic variation used by different populations to migrate and only few genes being involved in its control. We summarize recent work using new techniques for both phenotype and genotype characterization to evaluate and challenge these hypotheses. Finally, one topic that has received less attention is the role these differences in migratory phenotype could play in the process of speciation. Specifically, many populations breed next to one another but take drastically different routes on migration (Fig. 7.2). This difference could play an important role in reducing gene flow between populations, but our inability to track most birds on migration has so far precluded evaluations of this hypothesis. The advent of new tracking techniques means we can track many more birds with increasing accuracy on migration, and this work has provided important insight into migration's role in speciation that we will review here
Design, development and verification of the 30 and 44 GHz front-end modules for the Planck Low Frequency Instrument
We give a description of the design, construction and testing of the 30 and
44 GHz Front End Modules (FEMs) for the Low Frequency Instrument (LFI) of the
Planck mission to be launched in 2009. The scientific requirements of the
mission determine the performance parameters to be met by the FEMs, including
their linear polarization characteristics.
The FEM design is that of a differential pseudo-correlation radiometer in
which the signal from the sky is compared with a 4-K blackbody load. The Low
Noise Amplifier (LNA) at the heart of the FEM is based on indium phosphide High
Electron Mobility Transistors (HEMTs). The radiometer incorporates a novel
phase-switch design which gives excellent amplitude and phase match across the
band.
The noise temperature requirements are met within the measurement errors at
the two frequencies. For the most sensitive LNAs, the noise temperature at the
band centre is 3 and 5 times the quantum limit at 30 and 44 GHz respectively.
For some of the FEMs, the noise temperature is still falling as the ambient
temperature is reduced to 20 K. Stability tests of the FEMs, including a
measurement of the 1/f knee frequency, also meet mission requirements.
The 30 and 44 GHz FEMs have met or bettered the mission requirements in all
critical aspects. The most sensitive LNAs have reached new limits of noise
temperature for HEMTs at their band centres. The FEMs have well-defined linear
polarization characteristcs.Comment: 39 pages, 33 figures (33 EPS files), 12 tables. Planck LFI technical
papers published by JINST:
http://www.iop.org/EJ/journal/-page=extra.proc5/1748-022
No Detectable Fertility Benefit from a Single Additional Mating in Wild Stalk-Eyed Flies
Background: Multiple mating by female insects is widespread, and the explanation(s) for repeated mating by females has been the subject of much discussion. Females may profit from mating multiply through direct material benefits that increase their own reproductive output, or indirect genetic benefits that increase offspring fitness. One particular direct benefit that has attracted significant attention is that of fertility assurance, as females often need to mate multiply to achieve high fertility. This hypothesis has never been tested in a wild insect population.Methodology/Principal Findings: Female Malaysian stalk-eyed flies (Teleopsis dalmanni) mate repeatedly during their lifetime, and have been shown to be sperm limited under both laboratory and field conditions. Here we ask whether receiving an additional mating alleviates sperm limitation in wild females. In our experiment one group of females received a single additional mating, while a control group received an interrupted, and therefore unsuccessful, mating. Females that received an additional mating did not lay more fertilised eggs in total, nor did they lay proportionately more fertilised eggs. Female fertility declined significantly through time, demonstrating that females were sperm limited. However, receipt of an additional mating did not significantly alter the rate of this decline.Conclusions/Significance: Our data suggest that the fertility consequences of a single additional mating were small. We discuss this effect (or lack thereof), and suggest that it is likely to be attributed to small ejaculate size, a high proportion of failed copulations, and the presence of X-linked meiotic drive in this species
Evaluation of genetic isolation within an island flora reveals unusually widespread local adaptation and supports sympatric speciation
It is now recognized that speciation can proceed even when divergent natural selection is opposed by gene flow. Understanding the extent to which environmental gradients and geographical distance can limit gene flow within species can shed light on the relative roles of selection and dispersal limitation during the early stages of population divergence and speciation. On the remote Lord Howe Island (Australia), ecological speciation with gene flow is thought to have taken place in several plant genera. The aim of this study was to establish the contributions of isolation by environment (IBE) and isolation by community (IBC) to the genetic structure of 19 plant species, from a number of distantly related families, which have been subjected to similar environmental pressures over comparable time scales. We applied an individual-based, multivariate, model averaging approach to quantify IBE and IBC, while controlling for isolation by distance (IBD). Our analyses demonstrated that all species experienced some degree of ecologically driven isolation, whereas only 12 of 19 species were subjected to IBD. The prevalence of IBE within these plant species indicates that divergent selection in plants frequently produces local adaptation and supports hypotheses that ecological divergence can drive speciation in sympatry
- …
