45 research outputs found

    Reductions in co-contraction following neuromuscular re-education in people with knee osteoarthritis

    Get PDF
    Background Both increased knee muscle co-contraction and alterations in central pain processing have been suggested to play a role in knee osteoarthritis pain. However, current interventions do not target either of these mechanisms. The Alexander Technique provides neuromuscular re-education and may also influence anticipation of pain. This study therefore sought to investigate the potential clinical effectiveness of the AT intervention in the management of knee osteoarthritis and also to identify a possible mechanism of action. Methods A cohort of 21 participants with confirmed knee osteoarthritis were given 20 lessons of instruction in the Alexander Technique. In addition to clinical outcomes EMG data, quantifying knee muscle co-contraction and EEG data, characterising brain activity during anticipation of pain, were collected. All data were compared between baseline and post-intervention time points with a further 15-month clinical follow up. In addition, biomechanical data were collected from a healthy control group and compared with the data from the osteoarthritis subjects. Results: Following AT instruction the mean WOMAC pain score reduced by 56% from 9.6 to 4.2 (P<0.01) and this reduction was maintained at 15 month follow up. There was a clear decrease in medial co-contraction at the end of the intervention, towards the levels observed in the healthy control group, both during a pre-contact phase of gait (p<0.05) and during early stance (p<0.01). However, no changes in pain-anticipatory brain activity were observed. Interestingly, decreases in WOMAC pain were associated with reductions in medial co-contraction during the pre-contact phase of gait. Conclusions: This is the first study to investigate the potential effectiveness of an intervention aimed at increasing awareness of muscle behaviour in the clinical management of knee osteoarthritis. These data suggest a complex relationship between muscle contraction, joint loading and pain and support the idea that excessive muscle co-contraction may be a maladaptive response in this patient group. Furthermore, these data provide evidence that, if the activation of certain muscles can be reduced during gait, this may lead to positive long-term clinical outcomes. This finding challenges clinical management models of knee osteoarthritis which focus primarily on muscle strengthening

    Prognostic value of metabolic response in breast cancer patients receiving neoadjuvant chemotherapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Today's clinical diagnostic tools are insufficient for giving accurate prognosis to breast cancer patients. The aim of our study was to examine the tumor metabolic changes in patients with locally advanced breast cancer caused by neoadjuvant chemotherapy (NAC), relating these changes to clinical treatment response and long-term survival.</p> <p>Methods</p> <p>Patients (n = 89) participating in a randomized open-label multicenter study were allocated to receive either NAC as epirubicin or paclitaxel monotherapy. Biopsies were excised pre- and post-treatment, and analyzed by high resolution magic angle spinning magnetic resonance spectroscopy (HR MAS MRS). The metabolite profiles were examined by paired and unpaired multivariate methods and findings of important metabolites were confirmed by spectral integration of the metabolite peaks.</p> <p>Results</p> <p>All patients had a significant metabolic response to NAC, and pre- and post-treatment spectra could be discriminated with 87.9%/68.9% classification accuracy by paired/unpaired partial least squares discriminant analysis (PLS-DA) (<it>p </it>< 0.001). Similar metabolic responses were observed for the two chemotherapeutic agents. The metabolic responses were related to patient outcome. Non-survivors (< 5 years) had increased tumor levels of lactate (<it>p </it>= 0.004) after treatment, while survivors (≄ 5 years) experienced a decrease in the levels of glycine (<it>p </it>= 0.047) and choline-containing compounds (<it>p </it>≀ 0.013) and an increase in glucose (<it>p </it>= 0.002) levels. The metabolic responses were not related to clinical treatment response.</p> <p>Conclusions</p> <p>The differences in tumor metabolic response to NAC were associated with breast cancer survival, but not to clinical response. Monitoring metabolic responses to NAC by HR MAS MRS may provide information about tumor biology related to individual prognosis.</p

    Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    Get PDF
    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field
    corecore