87 research outputs found

    Dermoscopic and reflectance confocal microscopy findings in extra-genital hpv16-associated pigmented squamous cell carcinoma in situ

    Get PDF
    Cutaneous Oncology Department AC Camargo Cancer Center, Rua Professor Antonio Prudente, 211, São Paulo, BrazilPathology Department, AC Camargo Cancer Center, Rua Professor Antonio Prudente, 211, São Paulo, BrazilDepartment of Dermatology, Sheba Medical Center and Sackler School of Medicine, Tel Aviv University, Tel Aviv, IsraelDermatology Department, Federal University of São Paulo, São Paulo, BrazilDermatology Department, Federal University of São Paulo, São Paulo, BrazilWeb of Scienc

    Granular Cell Tumor Imaging Using Optical Coherence Tomography

    Get PDF
    Background: Granular cell tumor (GCT) is a relatively uncommon tumor that may affect the skin. The tumor can develop anywhere on the body, although it is predominately seen in oral cavities and in the head and neck regions. Here, we present the results of optical coherence tomography (OCT) imaging of a large GCT located on the abdomen of a patient. We also present an analytical method to differentiate between healthy tissue and GCT tissues. Materials and methods: A multibeam, Fourier domain, swept source OCT was used for imaging. The OCT had a central wavelength of 1305 ± 15 nm and lateral and axial resolutions of 7.5 and 10 µm, respectively. Qualitative and quantitative analyses of the tumor and healthy skin are reported. Results: Abrupt changes in architectures of the dermal and epidermal layers in the GCT lesion were observed. These architectural changes were not observed in healthy skin. Discussion: To quantitatively differentiate healthy skin from tumor regions, an optical attenuation coefficient analysis based on single-scattering formulation was performed. The methodology introduced here could have the capability to delineate boundaries of a tumor prior to surgical excision

    Surface Faulting and Ground Deformation: Considerations on Their Lower Detectable Limit and on FDHA for Nuclear Installations

    Get PDF
    We performed a review of a representative data set on coseismic surface deformation, derived from both interferometric synthetic aperture radar imaging and from a traditional field survey of surface faulting. This analysis indicates a minimum threshold value of Mw 5.4\u20135.5 for earthquake-induced ground deformation and faulting, with an inherently lower limit of detection that makes it hard to recognize surface deformation caused by Mw < 4.5\u20135.0 events. Significant exceptions are represented by shallow (i.e., less than circa 5 km) events that occur in volcano-tectonic settings, where surface deformation and dislocation are also clearly detectable for Mw circa 4.0. Furthermore, a statistically significant regression between the areal extent of surface deformation and maximum slip at surface is proposed. This correlation is discussed in relation to fault displacement hazard analysis for nuclear power plants. In particular, the deformation area is used to find a potential solution for the second and third criterion for defining a capable fault

    Surface faulting during the August 24, 2016, central Italy earthquake (Mw 6.0): Preliminary results

    Get PDF
    We present some preliminary results on the mapping of coseismically-induced ground ruptures following the Aug. 24, 2016, Central Italy earthquake (Mw 6.0). The seismogenic source, as highlighted by InSAR and seismological data, ruptured across two adjacent structures: the Mt. Vettore and Laga faults. We collected field data on ground breaks along the whole deformed area and two different scenarios of on-fault coseismic displacement arise from these observations. To the north, along the Mt. Vettore fault, surface faulting can be mapped quite continuously along a well-defined fault strand while such features are almost absent to the south, along the Laga fault, where flysch-like marly units are present. A major lithological control affects the surface expression of faulting, resulting in a complex deformation pattern

    A database of the coseismic effects following the 30 October 2016 Norcia earthquake in Central Italy

    Get PDF
    We provide a database of the coseismic geological surface effects following the Mw 6.5 Norcia earthquake that hit central Italy on 30 October 2016. This was one of the strongest seismic events to occur in Europe in the past thirty years, causing complex surface ruptures over an area of >400 km 2. The database originated from the collaboration of several European teams (Open EMERGEO Working Group; about 130 researchers) coordinated by the Istituto Nazionale di Geofisica e Vulcanologia. The observations were collected by performing detailed field surveys in the epicentral region in order to describe the geometry and kinematics of surface faulting, and subsequently of landslides and other secondary coseismic effects. The resulting database consists of homogeneous georeferenced records identifying 7323 observation points, each of which contains 18 numeric and string fields of relevant information. This database will impact future earthquake studies focused on modelling of the seismic processes in active extensional settings, updating probabilistic estimates of slip distribution, and assessing the hazard of surface faulting

    The IPBES Conceptual Framework - connecting nature and people

    Get PDF
    The first public product of the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES) is its Conceptual Framework. This conceptual and analytical tool, presented here in detail, will underpin all IPBES functions and provide structure and comparability to the syntheses that IPBES will produce at different spatial scales, on different themes, and in different regions. Salient innovative aspects of the IPBES Conceptual Framework are its transparent and participatory construction process and its explicit consideration of diverse scientific disciplines, stakeholders, and knowledge systems, including indigenous and local knowledge. Because the focus on co-construction of integrative knowledge is shared by an increasing number of initiatives worldwide, this framework should be useful beyond IPBES, for the wider research and knowledge-policy communities working on the links between nature and people, such as natural, social and engineering scientists, policy-makers at different levels, and decision-makers in different sectors of society

    Coulomb pre-stress and fault bends are ignored yet vital factors for earthquake triggering and hazard

    Get PDF
    Successive locations of individual large earthquakes (Mw>5.5) over years to centuries can be difficult to explain with simple Coulomb Stress Transfer (CST) because it is common for seismicity to circumvent nearest-neighbour along-strike faults where coseismic CST is greatest. We demonstrate that Coulomb pre-stress (the cumulative CST from multiple earthquakes and interseismic loading on non-planar faults) may explain this, evidenced by study of a 667-year historical record of earthquakes in central Italy. Heterogeneity in Coulomb pre-stresses across the fault system is >±50 bars, whereas coseismic CST is <±2 bars, so the latter will rarely overwhelm the former, explaining why historical earthquakes rarely rupture nearest neighbor faults. However, earthquakes do tend to occur where the cumulative coseismic and interseismic CST is positive, although there are notable examples where earthquake propagate across negatively stressed portions of faults. Hence Coulomb pre-stress calculated for non-planar faults is an ignored yet vital factor for earthquake triggering
    • …
    corecore