18 research outputs found

    Active Nuclear Receptors Exhibit Highly Correlated AF-2 Domain Motions

    Get PDF
    Nuclear receptor ligand binding domains (LBDs) convert ligand binding events into changes in gene expression by recruiting transcriptional coregulators to a conserved activation function-2 (AF-2) surface. While most nuclear receptor LBDs form homo- or heterodimers, the human nuclear receptor pregnane X receptor (PXR) forms a unique and essential homodimer and is proposed to assemble into a functional heterotetramer with the retinoid X receptor (RXR). How the homodimer interface, which is located 30 Å from the AF-2, would affect function at this critical surface has remained unclear. By using 20- to 30-ns molecular dynamics simulations on PXR in various oligomerization states, we observed a remarkably high degree of correlated motion in the PXR–RXR heterotetramer, most notably in the four helices that create the AF-2 domain. The function of such correlation may be to create “active-capable” receptor complexes that are ready to bind to transcriptional coactivators. Indeed, we found in additional simulations that active-capable receptor complexes involving other orphan or steroid nuclear receptors also exhibit highly correlated AF-2 domain motions. We further propose a mechanism for the transmission of long-range motions through the nuclear receptor LBD to the AF-2 surface. Taken together, our findings indicate that long-range motions within the LBD scaffold are critical to nuclear receptor function by promoting a mobile AF-2 state ready to bind coactivators

    Medium Chain Fatty Acids Are Selective Peroxisome Proliferator Activated Receptor (PPAR) γ Activators and Pan-PPAR Partial Agonists

    Get PDF
    Thiazolidinediones (TZDs) act through peroxisome proliferator activated receptor (PPAR) γ to increase insulin sensitivity in type 2 diabetes (T2DM), but deleterious effects of these ligands mean that selective modulators with improved clinical profiles are needed. We obtained a crystal structure of PPARγ ligand binding domain (LBD) and found that the ligand binding pocket (LBP) is occupied by bacterial medium chain fatty acids (MCFAs). We verified that MCFAs (C8–C10) bind the PPARγ LBD in vitro and showed that they are low-potency partial agonists that display assay-specific actions relative to TZDs; they act as very weak partial agonists in transfections with PPARγ LBD, stronger partial agonists with full length PPARγ and exhibit full blockade of PPARγ phosphorylation by cyclin-dependent kinase 5 (cdk5), linked to reversal of adipose tissue insulin resistance. MCFAs that bind PPARγ also antagonize TZD-dependent adipogenesis in vitro. X-ray structure B-factor analysis and molecular dynamics (MD) simulations suggest that MCFAs weakly stabilize C-terminal activation helix (H) 12 relative to TZDs and this effect is highly dependent on chain length. By contrast, MCFAs preferentially stabilize the H2-H3/β-sheet region and the helix (H) 11-H12 loop relative to TZDs and we propose that MCFA assay-specific actions are linked to their unique binding mode and suggest that it may be possible to identify selective PPARγ modulators with useful clinical profiles among natural products

    Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    Get PDF
    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field
    corecore