128 research outputs found
Follow-up question handling in the IMIX and Ritel systems: A comparative study
One of the basic topics of question answering (QA) dialogue systems is how follow-up questions should be interpreted by a QA system. In this paper, we shall discuss our experience with the IMIX and Ritel systems, for both of which a follow-up question handling scheme has been developed, and corpora have been collected. These two systems are each other's opposites in many respects: IMIX is multimodal, non-factoid, black-box QA, while Ritel is speech, factoid, keyword-based QA. Nevertheless, we will show that they are quite comparable, and that it is fruitful to examine the similarities and differences. We shall look at how the systems are composed, and how real, non-expert, users interact with the systems. We shall also provide comparisons with systems from the literature where possible, and indicate where open issues lie and in what areas existing systems may be improved. We conclude that most systems have a common architecture with a set of common subtasks, in particular detecting follow-up questions and finding referents for them. We characterise these tasks using the typical techniques used for performing them, and data from our corpora. We also identify a special type of follow-up question, the discourse question, which is asked when the user is trying to understand an answer, and propose some basic methods for handling it
The Ageing Brain: Effects on DNA Repair and DNA Methylation in Mice
The Centre for Ageing & Vitality is funded by the MRC and BBSRC (Grant Reference
MR/L016354/1). This work was further supported by the Centre for Integrated Systems Biology of Ageing
and Nutrition funded by the BBSRC and EPSRC (G0700718). Part of the work was supported by BBSRC Grant
BB/K010867/1
Screening of chorioamnionitis using volatile organic compound detection in exhaled breath: a pre-clinical proof of concept study
Chorioamnionitis is a major risk factor for preterm birth and an independent risk factor for postnatal morbidity for which currently successful therapies are lacking. Emerging evidence indicates that the timing and duration of intra-amniotic infections are crucial determinants for the stage of developmental injury at birth. Insight into the dynamical changes of organ injury after the onset of chorioamnionitis revealed novel therapeutic windows of opportunity. Importantly, successful development and implementation of therapies in clinical care is currently impeded by a lack of diagnostic tools for early (prenatal) detection and surveillance of intra-amniotic infections. In the current study we questioned whether an intra-amniotic infection could be accurately diagnosed by a specific volatile organic compound (VOC) profile in exhaled breath of pregnant sheep. For this purpose pregnant Texel ewes were inoculated intra-amniotically with Ureaplasma parvum and serial collections of exhaled breath were performed for 6 days. Ureaplasma parvum infection induced a distinct VOC-signature in expired breath of pregnant sheep that was significantly different between day 0 and 1 vs. day 5 and 6. Based on a profile of only 15 discriminatory volatiles, animals could correctly be classified as either infected (day 5 and 6) or not (day 0 and 1) with a sensitivity of 83% and a specificity of 71% and an area under the curve of 0.93. Chemical identification of these distinct VOCs revealed the presence of a lipid peroxidation marker nonanal and various hydrocarbons including n-undecane and n-dodecane. These data indicate that intra-amniotic infections can be detected by VOC analyses of exhaled breath and might provide insight into temporal dynamics of intra-amniotic infection and its underlying pathways. In particular, several of these volatiles are associated with enhanced oxidative stress and undecane and dodecane have been reported as predictive biomarker of spontaneous preterm birth in humans. Applying VOC analysis for the early detection of intra-amniotic infections will lead to appropriate surveillance of these high-risk pregnancies, thereby facilitating appropriate clinical course of action including early treatment of preventative measures for pre-maturity-associated morbidities
Decreased antigen-specific T-cell proliferation by moDC among hepatitis B vaccine non-responders on haemodialysis
Patients with end-stage kidney disease, whether or not on renal replacement therapy, have an impaired immune system. This is clinically manifested by a large percentage of patients unresponsive to the standard vaccination procedure for hepatitis B virus (HBV). In this study, the immune response to HBV vaccination is related to the in vitro function of monocyte-derived dendritic cells (moDC). We demonstrate that mature moDC from nonresponders to HBV vaccination have a less mature phenotype, compared to responders and healthy volunteers, although this did not affect their allostimulatory capacity. However, proliferation of autologous T cells in the presence of tetanus toxoid and candida antigen was decreased in non-responders. Also, HLA-matched CD4+ hsp65-specific human T-cell clones showed markedly decreased proliferation in the group of non-responders. Our results indicate that impairment of moDC to stimulate antigen-specific T cells provides an explanation for the clinical immunodeficiency of patients with end-stage kidney disease
Sensitivity of Local Dynamic Stability of Over-Ground Walking to Balance Impairment Due to Galvanic Vestibular Stimulation
Impaired balance control during gait can be detected by local dynamic stability measures. For clinical applications, the use of a treadmill may be limiting. Therefore, the aim of this study was to test sensitivity of these stability measures collected during short episodes of over-ground walking by comparing normal to impaired balance control. Galvanic vestibular stimulation (GVS) was used to impair balance control in 12 healthy adults, while walking up and down a 10 m hallway. Trunk kinematics, collected by an inertial sensor, were divided into episodes of one stroll along the hallway. Local dynamic stability was quantified using short-term Lyapunov exponents (λs), and subjected to a bootstrap analysis to determine the effects of number of episodes analysed on precision and sensitivity of the measure. λs increased from 0.50 ± 0.06 to 0.56 ± 0.08 (p = 0.0045) when walking with GVS. With increasing number of episodes, coefficients of variation decreased from 10 ± 1.3% to 5 ± 0.7% and the number of p values >0.05 from 42 to 3.5%, indicating that both precision of estimates of λs and sensitivity to the effect of GVS increased. λs calculated over multiple episodes of over-ground walking appears to be a suitable measure to calculate local dynamic stability on group level
Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead.
Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety 'Mode of Action' framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology
Menopausal Status Modifies Breast Cancer Risk Associated with the Myeloperoxidase (MPO) G463A Polymorphism in Caucasian Women: A Meta-Analysis
BACKGROUND: Breast cancer susceptibility may be modulated partly through polymorphisms in oxidative enzymes, one of which is myeloperoxidase (MPO). Association of the low transcription activity variant allele A in the G463A polymorphism has been investigated for its association with breast cancer risk, considering the modifying effects of menopausal status and antioxidant intake levels of cases and controls. METHODOLOGY/PRINCIPAL FINDINGS: To obtain a more precise estimate of association using the odds ratio (OR), we performed a meta-analysis of 2,975 cases and 3,427 controls from three published articles of Caucasian populations living in the United States. Heterogeneity among studies was tested and sensitivity analysis was applied. The lower transcriptional activity AA genotype of MPO in the pre-menopausal population showed significantly reduced risk (OR 0.56-0.57, p = 0.03) in contrast to their post-menopausal counterparts which showed non-significant increased risk (OR 1.14; p = 0.34-0.36). High intake of antioxidants (OR 0.67-0.86, p = 0.04-0.05) and carotenoids (OR 0.68-0.86, p = 0.03-0.05) conferred significant protection in the women. Stratified by menopausal status, this effect was observed in pre-menopausal women especially those whose antioxidant intake was high (OR 0.42-0.69, p = 0.04). In post-menopausal women, effect of low intake elicited susceptibility (OR 1.19-1.67, p = 0.07-0.17) to breast cancer. CONCLUSIONS/SIGNIFICANCE: Based on a homogeneous Caucasian population, the MPO G463A polymorphism places post-menopausal women at risk for breast cancer, where this effect is modified by diet
Fractal analyses reveal independent complexity and predictability of gait
Locomotion is a natural task that has been assessed for decades and used as a proxy to highlight impairments of various origins. So far, most studies adopted classical linear analyses of spatio-temporal gait parameters. Here, we use more advanced, yet not less practical, non-linear techniques to analyse gait time series of healthy subjects. We aimed at finding more sensitive indexes related to spatio-temporal gait parameters than those previously used, with the hope to better identify abnormal locomotion. We analysed large-scale stride interval time series and mean step width in 34 participants while altering walking direction (forward vs. backward walking) and with or without galvanic vestibular stimulation. The Hurst exponent α and the Minkowski fractal dimension D were computed and interpreted as indexes expressing predictability and complexity of stride interval time series, respectively. These holistic indexes can easily be interpreted in the framework of optimal movement complexity. We show that α and D accurately capture stride interval changes in function of the experimental condition. Walking forward exhibited maximal complexity (D) and hence, adaptability. In contrast, walking backward and/or stimulation of the vestibular system decreased D. Furthermore, walking backward increased predictability (α) through a more stereotyped pattern of the stride interval and galvanic vestibular stimulation reduced predictability. The present study demonstrates the complementary power of the Hurst exponent and the fractal dimension to improve walking classification. Our developments may have immediate applications in rehabilitation, diagnosis, and classification procedures
- …