19 research outputs found

    Atmospheric mixing ratios of methyl ethyl ketone (2-butanone) in tropical, boreal, temperate and marine environments

    Get PDF
    Methyl ethyl ketone (MEK) enters the atmosphere following direct emission from vegetation and anthropogenic activities, as well as being produced by the gas-phase oxidation of volatile organic compounds (VOCs) such as n-butane. This study presents the first overview of ambient MEK measurements at six different locations, characteristic of forested, urban and marine environments. In order to understand better the occurrence and behaviour of MEK in the atmosphere, we analyse diel cycles of MEK mixing ratios, vertical profiles, ecosystem flux data, and HYSPLIT back trajectories, and compare with co-measured VOCs. MEK measurements were primarily conducted with proton-transfer-reaction mass spectrometer (PTR-MS) instruments. Results from the sites under biogenic influence demonstrate that vegetation is an important source of MEK. The diel cycle of MEK follows that of ambient temperature and the forest structure plays an important role in air mixing. At such sites, a high correlation of MEK with acetone was observed (e.g. r2 = 0.96 for the SMEAR Estonia site in a remote hemiboreal forest in Tartumaa, Estonia, and r2 = 0.89 at the ATTO pristine tropical rainforest site in central Amazonia). Under polluted conditions, we observed strongly enhanced MEK mixing ratios. Overall, the MEK mixing ratios and flux data presented here indicate that both biogenic and anthropogenic sources contribute to its occurrence in the global atmosphere

    Volatile organic compounds (VOCs) in photochemically aged air from the eastern and western Mediterranean

    Get PDF
    During the summertime CYPHEX campaign (CYprus PHotochemical EXperiment 2014) in the eastern Mediterranean, multiple volatile organic compounds (VOCs) were measured from a 650 m hilltop site in western Cyprus (34° 57′ N/32° 23′ E). Periodic shifts in the northerly Etesian winds resulted in the site being alternately impacted by photochemically processed emissions from western (Spain, France, Italy) and eastern (Turkey, Greece) Europe. Furthermore, the site was situated within the residual layer/free troposphere during some nights which were characterized by high ozone and low relative humidity levels. In this study we examine the temporal variation of VOCs at the site. The sparse Mediterranean scrub vegetation generated diel cycles in the reactive biogenic hydrocarbon isoprene, from very low values at night to a diurnal median level of 80–100 pptv. In contrast, the oxygenated volatile organic compounds (OVOCs) methanol and acetone exhibited weak diel cycles and were approximately an order of magnitude higher in mixing ratio (ca. 2.5–3 ppbv median level by day, range: ca. 1–8 ppbv) than the locally emitted isoprene and aromatic compounds such as benzene and toluene. Acetic acid was present at mixing ratios between 0.05 and 4 ppbv with a median level of ca. 1.2 ppbv during the daytime. When data points directly affected by the residual layer/free troposphere were excluded, the acid followed a pronounced diel cycle, which was influenced by various local effects including photochemical production and loss, direct emission, dry deposition and scavenging from advecting air in fog banks. The Lagrangian model FLEXPART was used to determine transport patterns and photochemical processing times (between 12 h and several days) of air masses originating from eastern and western Europe. Ozone and many OVOC levels were  ∼  20 and  ∼  30–60 % higher, respectively, in air arriving from the east. Using the FLEXPART calculated transport time, the contribution of photochemical processing, sea surface contact and dilution was estimated. Methanol and acetone decreased with residence time in the marine boundary layer (MBL) with loss rate constants of 0.74 and 0.53 day−1 from eastern Europe and 0.70 and 0.34 day−1 from western Europe, respectively. Simulations using the EMAC model underestimate these loss rates. The missing sink in the calculation is most probably an oceanic uptake enhanced by microbial consumption of methanol and acetone, although the temporal and spatial variability in the source strength on the continents might play a role as well. Correlations between acetone and methanol were weaker in western air masses (r2  =  0.68), but were stronger in air masses measured after the shorter transport time from the east (r2  =  0.73)

    Oxidation processes in the eastern Mediterranean atmosphere: evidence from the modelling of HOx measurements over Cyprus

    Get PDF
    The Mediterranean is a climatically sensitive region located at the crossroads of air masses from three continents: Europe, Africa, and Asia. The chemical processing of air masses over this region has implications not only for the air quality but also for the long-range transport of air pollution. To obtain a comprehensive understanding of oxidation processes over the Mediterranean, atmospheric concentrations of the hydroxyl radical (OH) and the hydroperoxyl radical (HO2) were measured during an intensive field campaign (CYprus PHotochemistry EXperiment, CYPHEX-2014) in the northwest of Cyprus in the summer of 2014. Very low local anthropogenic and biogenic emissions around the measurement location provided a vantage point to study the contrasts in atmospheric oxidation pathways under highly processed marine air masses and those influenced by relatively fresh emissions from mainland Europe. The CYPHEX measurements were used to evaluate OH and HO2 simulations using a photochemical box model (CAABA/MECCA) constrained with CYPHEX observations of O3, CO, NOx, hydrocarbons, peroxides, and other major HOx (OH+HO2) sources and sinks in a low-NOx environment (<100pptv of NO). The model simulations for OH agreed to within 10% with in situ OH observations. Model simulations for HO2 agreed to within 17% of the in situ observations. However, the model strongly under-predicted HO2 at high terpene concentrations, this under-prediction reaching up to 38% at the highest terpene levels. Different schemes to improve the agreement between observed and modelled HO2, including changing the rate coefficients for the reactions of terpene-generated peroxy radicals (RO2) with NO and HO2 as well as the autoxidation of terpene-generated RO2 species, are explored in this work. The main source of OH in Cyprus was its primary production from O3 photolysis during the day and HONO photolysis during early morning. Recycling contributed about one-third of the total OH production, and the maximum recycling efficiency was about 0.7. CO, which was the largest OH sink, was also the largest HO2 source. The lowest HOx production and losses occurred when the air masses had higher residence time over the oceans

    Glyoxal measurement with a proton transfer reaction time of flight mass spectrometer (PTR-TOF-MS): characterization and calibration

    No full text
    We examine the potential for PTR-TOF-MS systems to quantitatively measure glyoxal in ambient air by characterizing the response of the instrument to a dilute glyoxal sample, calibrating the system as a function of humidity. The concentration of glyoxal in a sample air-stream was measured with an UV absorption spectrometer in parallel to a PTR-TOF-MS. This calibration demonstrated that the PTR-TOF-MS has a relatively low sensitivity to glyoxal particularly at high humidity. Extensive fragmentation of glyoxal to formaldehyde was observed. This behaviour not only desensitizes PTR-MS system to glyoxal; it may also pose a problem to the quantification of formaldehyde

    Proof of concept study: Testing human volatile organic compounds as tools for age classification of films.

    No full text
    Humans emit numerous volatile organic compounds (VOCs) through breath and skin. The nature and rate of these emissions are affected by various factors including emotional state. Previous measurements of VOCs and CO2 in a cinema have shown that certain chemicals are reproducibly emitted by audiences reacting to events in a particular film. Using data from films with various age classifications, we have studied the relationship between the emission of multiple VOCs and CO2 and the age classifier (0, 6, 12, and 16) with a view to developing a new chemically based and objective film classification method. We apply a random forest model built with time independent features extracted from the time series of every measured compound, and test predictive capability on subsets of all data. It was found that most compounds were not able to predict all age classifiers reliably, likely reflecting the fact that current classification is based on perceived sensibilities to many factors (e.g. incidences of violence, sex, antisocial behaviour, drug use, and bad language) rather than the visceral biological responses expressed in the data. However, promising results were found for isoprene which reliably predicted 0, 6 and 12 age classifiers for a variety of film genres and audience age groups. Therefore, isoprene emission per person might in future be a valuable aid to national classification boards, or even offer an alternative, objective, metric for rating films based on the reactions of large groups of people

    Cinema audiences reproducibly vary the chemical composition of air during films, by broadcasting scene specific emissions on breath

    No full text
    Human beings continuously emit chemicals into the air by breath and through the skin. In order to determine whether these missions vary predictably in response to audiovisual stimuli, we have continuously monitored carbon dioxide and over one hundred volatile organic compounds in a cinema. It was found that many airborne chemicals in cinema air varied distinctively and reproducibly with time for a particular film, even in different screenings to different audiences. Application of scene labels and advanced data mining methods revealed that specific film events, namely “suspense” or “comedy” caused audiences to change their emission of specific chemicals. These event-type synchronous, broadcasted human chemosignals open the possibility for objective and non-invasive assessment of a human group response to stimuli by continuous measurement of chemicals in air. Such methods can be applied to research fields such as psychology and biology, and be valuable to industries such as film making and advertising
    corecore