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Abstract. Methyl ethyl ketone (MEK) enters the atmosphere
following direct emission from vegetation and anthropogenic
activities, as well as being produced by the gas-phase ox-
idation of volatile organic compounds (VOCs) such as n-
butane. This study presents the first overview of ambient
MEK measurements at six different locations, characteris-
tic of forested, urban and marine environments. In order to
understand better the occurrence and behaviour of MEK in
the atmosphere, we analyse diel cycles of MEK mixing ra-
tios, vertical profiles, ecosystem flux data, and HYSPLIT
back trajectories, and compare with co-measured VOCs.
MEK measurements were primarily conducted with proton-
transfer-reaction mass spectrometer (PTR-MS) instruments.
Results from the sites under biogenic influence demonstrate
that vegetation is an important source of MEK. The diel cy-
cle of MEK follows that of ambient temperature and the

forest structure plays an important role in air mixing. At
such sites, a high correlation of MEK with acetone was ob-
served (e.g. r2

= 0.96 for the SMEAR Estonia site in a re-
mote hemiboreal forest in Tartumaa, Estonia, and r2

= 0.89
at the ATTO pristine tropical rainforest site in central Ama-
zonia). Under polluted conditions, we observed strongly en-
hanced MEK mixing ratios. Overall, the MEK mixing ra-
tios and flux data presented here indicate that both biogenic
and anthropogenic sources contribute to its occurrence in the
global atmosphere.
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1 Introduction

Methyl ethyl ketone (C4H8O; MEK, also known as 2-
butanone, butanone, methyl acetone, butan-2-one, methyl-
propanone and ethyl methyl ketone) is an oxygenated volatile
organic compound (OVOC). Its occurrence in the atmosphere
has been reported over a wide range of environments (Ceci-
nato et al., 2002; Hellén et al., 2004; Ho et al., 2002; Kim
et al., 2015; McKinney et al., 2011; Singh et al., 2004) with
typical mixing ratios of 0.03–4 ppb (Ciccioli and Mannozzi,
2007; Kim et al., 2015). Although often being measured
alongside other volatile organic compounds (VOCs), atmo-
spheric MEK has received little attention to date. The pho-
tochemistry of acetone may serve as an example of how ke-
tones affect the composition and chemistry of the atmosphere
by delivering free radicals to the upper troposphere (Colomb
et al., 2006; Finlayson-Pitts and Pitts, 2000; McKeen et al.,
1997) and thus increasing the ozone formation potential and
altering the oxides of nitrogen (NOx) regime (Ciccioli and
Mannozzi, 2007; Folkins et al., 1998; Prather and Jacob,
1997). This understanding may be transferred to MEK, as
this molecule is structurally similar to acetone, with a com-
parable absorption spectrum (Martinez et al., 1992). Several
studies report that the mixing ratio of MEK in the free tro-
posphere is roughly one-quarter of that of acetone (Moore et
al., 2012; Singh et al., 2004). However, MEK is about an or-
der of magnitude more reactive than acetone with respect to
the hydroxyl radical (OH) (Atkinson, 2000), which makes it
a compound of interest in ongoing discussions about the in-
ability to fully account for the reactivity of OH (Nölscher et
al., 2016).

There are several known but poorly characterised sources
of MEK to the atmosphere. Terrestrial vegetation (Bracho-
Nunez et al., 2013; Brilli et al., 2014; Davison et al., 2008;
De Gouw et al., 1999; Isidorov et al., 1985; Jardine et al.,
2010; Kirstine et al., 1998; König et al., 1995; McKinney
et al., 2011; Ruuskanen et al., 2011; Song and Ryu, 2013;
Steeghs et al., 2004; Wilkins, 1996; Yáñez-Serrano et al.,
2015), fungi (Wheatley et al., 1997) and bacteria (Song and
Ryu, 2013; Wilkins, 1996) are known to emit MEK. It is also
emitted directly by several anthropogenic sources, including
anthropogenic biomass burning (Andreae and Merlet, 2001),
solvent evaporation (Kim et al., 2015; Legreid et al., 2007)
and vehicle exhaust (Bon et al., 2011; Brito et al., 2015; Liu
et al., 2015; Verschueren, 1983). In addition, MEK can be
formed via the atmospheric oxidation of other compounds
(de Gouw et al., 2003; Jenkin et al., 1997; Neier and Strehlke,
2002; Sommariva et al., 2011).

Looking in more detail at biogenic sources, MEK emis-
sions have been observed from different types of vegetation,
including forest canopies (Brilli et al., 2014; Jordan et al.,
2009b; Yáñez-Serrano et al., 2015), pasture (Davison et al.,
2008; De Gouw et al., 1999; Kirstine et al., 1998) and clover
(De Gouw et al., 1999; Kirstine et al., 1998). The MEK pro-
duction and release mechanisms are manifold but poorly un-

derstood. Studies show higher MEK emissions after cutting
and drying of leaves than under no-stress conditions (Davi-
son et al., 2008; De Gouw et al., 1999). Due to the water
solubility of MEK in leaves and on surfaces (Sander, 2015),
Jardine et al. (2010) suggested MEK emissions to be depen-
dent on evaporation from storage pools in leaves. It has been
suggested that MEK takes part in tri-trophic signalling fol-
lowing herbivore attack (Jardine et al., 2010; Song and Ryu,
2013). The roots of plants have also been found to release
MEK in root–aphid interactions (Steeghs et al., 2004). De-
caying plant tissue may also act as a source of MEK to
the atmosphere (Warneke et al., 1999). Furthermore, some
studies indicate the importance of MEK emissions by mi-
crobes, such as Brevibacterium linens, Bacillus spp. and ther-
mophilic Gram-positive actinomycetes bacteria (Song and
Ryu, 2013; Wilkins, 1996), and fungi such as Trichoderma
spp. (Wheatley et al., 1997).

MEK not only enters the atmosphere via direct emis-
sions but also results from the atmospheric photooxidation
of VOCs such as n-butane, 2-butanol, 3-methyl pentane and
2-methyl-1-butene (de Gouw et al., 2003; Jenkin et al., 1997;
Neier and Strehlke, 2002; Sommariva et al., 2011). Although
butane in the atmosphere comes predominantly from an-
thropogenic sources (Kesselmeier and Staudt, 1999), some
studies have reported emission of n-butane from vegetation
(Donoso et al., 1996; Greenberg and Zimmerman, 1984; Hel-
lén et al., 2006; König et al., 1995; Zimmerman et al., 1988).
The MEK yield from n-butane oxidation is ∼ 80 % (Singh
et al., 2004). It is important to note that no mechanistic
pathways have been found for atmospheric MEK production
from the dominant biogenic VOCs isoprene, α-pinene and β-
pinene, as well as from methyl butenol oxidation (Rollins et
al., 2009; Singh et al., 2004).

In the atmosphere MEK reacts mainly with OH (kOH =

1.15× 10−12 cm3 s−1) (Chew and Atkinson, 1996), while
reactions with O3 and NO3 are very slow during the day
and hence negligible (Atkinson and Arey, 2003). MEK has
a lifetime of 5.4 days at an OH concentration of 1.6×
106 radicals cm−3, whereas isoprene and acetone have life-
times of 8.2 h and 38 days, respectively, under the same con-
ditions (Grant et al., 2008). The atmospheric degradation of
MEK leads to acetaldehyde and formaldehyde formation. In
the presence of NOx , MEK can lead to peroxyacetyl nitrate
(PAN) and ozone formation (Grosjean et al., 2002; Pinho et
al., 2005). In the upper troposphere, MEK photolyses and re-
generates OH (Atkinson, 2000; Baeza Romero et al., 2005;
De Gouw et al., 1999), as does acetone, potentially increas-
ing ozone formation.

Anthropogenic biomass burning leads to significant MEK
emissions of about 2 Tg a−1 globally (Andreae and Merlet,
2001, and unpublished updates; Schauer et al., 2001). Fur-
thermore, about 9 Tg a−1 of other C4 compounds is emit-
ted by biomass burning, which may act as MEK precur-
sors. Another strong source of MEK is biofuel and char-
coal combustion, with emissions of ∼ 830 mg kg−1 of dry
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biomass (compared to an emission rate of ∼ 260 mg kg−1 of
dry mass for biomass burning of savannah and grassland veg-
etation types; Andreae and Merlet, 2001). Despite the fact
that biomass burning emission rates have been fairly well
characterised, vehicular emissions, food cooking, industrial
activities, cigarette smoke and other anthropogenic sources
have not been characterised. Even though MEK is present in
urban atmospheres, there are no observations of MEK emis-
sions from vehicles. Most of the urban MEK is released to
the atmosphere via evaporation from chemical plants and in-
dustrial and household applications, as it is widely used as a
solvent (e.g. in glues and as a paint thinner). It has a low toxi-
city and is not carcinogenic (National Center for Biotechnol-
ogy, 2015). As its manufacturing has been increasing in the
last 10 years, global atmospheric mixing ratios have probably
increased as well.

Here we report recent findings on MEK from six different
sites, including biogenic- and anthropogenic-dominated en-
vironments, in order to understand MEK sources in different
environments. Our large dataset allows a closer view of this
important, almost ubiquitous species in Earth’s atmosphere.

2 Sites and methodology

The field sites compared in our study cover areas from pris-
tine to remote anthropogenically influenced tropical forests,
as well as boreal and Mediterranean regions. Measure-
ments were performed using proton-transfer-reaction mass
spectrometry (PTR-MS) and partly complemented by gas
chromatography–flame ionisation detection (GC-FID) and
gas chromatography–mass spectrometry (GC-MS) analytical
techniques (Fig. 1, Table 1).

Online MEK measurements were performed with
quadrupole PTR-MSs (Ionicon Analytic GmbH, Austria;
Lindinger et al., 1998) at all sites except for CYPHEX,
where a proton transfer reaction time-of-flight mass spec-
trometer (PTR-ToF-MS, Ionicon Analytic GmbH, Austria;
Jordan et al., 2009a) was used. The PTR-MSs were operated
at standard conditions (2.2 mbar drift pressure, 600 V drift
voltage, 142 Td for ATTO and SMEAR Estonia; 2.0 mbar
drift pressure, 550 V drift voltage, 129 Td, for TT34;
2.2 mbar drift pressure, 600 V drift voltage, 135 Td for
O3HP; 2.2 mbar drift pressure, 560 V drift voltage, 132 Td
for T2; and 2.2 mbar drift pressure, 600 V drift voltage,
137 Td for CYPHEX).

Periodic background measurements and weekly humid
calibrations were performed at all sites. Gravimetrically pre-
pared multicomponent standards were obtained from Apel &
Riemer, USA, for ATTO, TT34, T2 and CYPHEX and from
Ionicon Analytik GmbH, Austria, for O3HP and SMEAR Es-
tonia.

2.1 The Amazon Tall Tower Observatory, ATTO:
pristine tropical rainforest (Amazon, Brazil)

The Amazon Tall Tower Observatory (ATTO) site is lo-
cated in central Amazonia, 150 km NE of Manaus, Brazil
(Fig. 1), within a pristine primary tropical rainforest. The
site is equipped with a tall tower (325 m) and two 80 m tow-
ers. One of them (02◦08′38.8′′ S, 58◦59′59.5′′W) is an 80 m
walk-up tower, where the trace gas measurements take place.
It is surrounded by a forest with a canopy height of ap-
proximately 35 m and with at least 417 different tree species
among 7293 screened trees of ≥ 10 cm diameter at breast
height (DBH) in the twelve 1 ha inventoried plots (Andreae
et al., 2015). The climate of this site is typical for tropical
rainforests with a drier season (July–October) and a wet sea-
son (December–April; Nobre et al., 2009).

Measurements for this study took place 18 February–
15 March 2014. They were carried out at seven different
heights (0.05, 0.5, 4, 24, 53 and 79 m) with the PTR-MS
switching sequentially between each height in 2 min inter-
vals. The inlet lines were made of PTFE (9.5 mm OD), in-
sulated and heated to 50 ◦C, and had PTFE particle inlet fil-
ters. More information about the gradient system and PTR-
MS operation at ATTO can be found elsewhere (Nölscher et
al., 2016; Yáñez-Serrano et al., 2015). The limit of detection
(LOD) and uncertainty in the PTR-MS were 0.05 ppb and
34 %, respectively.

Additionally, ambient samples for offline measurements
with GC-FID were taken on 11 March 2014 from 08:30 to
11:00 LT. They were collected at 24 m using a GSA SG-
10-2 personal sampler pump and adsorber tubes (130 mg
of Carbograph 1 (90 m2 g−1) followed by 130 mg of Car-
bograph 5 (560 m2 g−1)). The size of the Carbograph par-
ticles was in the range of 20–40 mesh. Carbograph 1 and
5 were provided by Lara s.r.l. (Rome, Italy). Samples were
collected for 20 min with a flow of 167 mL min−1 passing
about 3.3 L of ambient air through the adsorbent. Cartridges
were transported to the laboratory for analysis by a Perkin
Elmer Autosystem XL GC-FID. These samples generally
matched the results of the PTR-MS. For details on sampling
see Kesselmeier et al. (2002).

2.2 TT34: remote tropical rainforest (Amazon, Brazil)

The ZF2 site is located in the Reserva Biologica do Cuieiras
in central Amazonia, 60 km NNW of Manaus (2◦35′39.4′′ S,
60◦12′33.4′′W) within a remote primary tropical rainforest
(Fig. 1). The site is equipped with two towers, TT34 and the
K34. The TT34 triangular tower is 40 m high and embedded
within the forest with a canopy height of approximately 30 m.
The biodiversity of this site is also high and the climate is
very similar to that at the ATTO site. More information about
the site can be found elsewhere (Karl et al., 2009; Martin et
al., 2010).

www.atmos-chem-phys.net/16/10965/2016/ Atmos. Chem. Phys., 16, 10965–10984, 2016



10968 A. M. Yáñez-Serrano et al.: Atmospheric mixing ratios of methyl ethyl ketone (2-butanone)

Table 1. Measurement sites, site environment, sampling dates, methods used and sampling heights.

Site Characteristics Canopy height Time of sampling Technique Type of
measurement

Measurement
heights

ATTO
(Brazil)

Pristine tropical
rainforest

35 m dense veg. Feb/Mar 2014 PTR-MS
GC-FID (samples for of-
fline analysis, collected
volume= 3.34 L)

Ambient 0.05, 0.5, 4, 24,
38, 53, 79 m
24 m

TT34
(Brazil)

Remote tropical
rainforest

30 m dense veg. Sep 2013–Jul 2014 PTR-MS Ambient,
including
canopy-scale
fluxes

41 m

SMEAR
(Estonia)

Remote hemibo-
real forest

16–20 m dense
veg.

Jun, Jul, Oct 2012
Oct 2012

GC-MS (samples for of-
fline analysis, collected
volume= 6 L)
PTR-MS

Ambient, plant,
soil enclosure
Ambient, plant
enclosure

2, 20 m

16 m

O3HP
(France)

Rural temperate
forest

5 m sparse veg. May–Jun 2014 PTR-MS Ambient 2 m

T2
(Brazil)

Mixed urban-
and rainforest-
influenced envi-
ronment

Influence from
veg. nearby

Feb–Apr 2014
Jul–Oct 2014

PTR-MS Ambient 14 m

CYPHEX
(Cyprus)

Mixed marine,
rural environment
influenced by
aged air masses

None, on top of
a hill

Jul–Aug 2014 PTR-TOF-MS Ambient 8 m

Measurements for this study were made from 1 Septem-
ber 2013 to 20 July 2014 at 41 m, at a fast rate (0.5 Hz)
for virtual disjunct eddy covariance (vDEC) flux derivations
techniques (Karl et al., 2002; Langford et al., 2009; Rinne
et al., 2002). The high-resolution data were further aver-
aged to give 30 min concentration and flux data. Wind vector
data were obtained with a sonic anemometer (Gill R3, USA)
mounted at the top of the tower close to the PTR-MS in-
let. The PTR-MS inlet line was made of PFA (12.7 mm OD)
(PFA-T8-062-100, Swagelok) and was insulated and heated
to 40 ◦C inside the air-conditioned cabin. The LOD and
uncertainty averaged 30 min concentrations measurements
were 0.18 ppb and 6 %, respectively.

2.3 Station for Measuring Ecosystem-Atmosphere
Relations, SMEAR Estonia: remote hemiboreal
forest (Tartumaa, Estonia)

The Station for Measuring Ecosystem-Atmosphere Relations
(SMEAR Estonia) site is located in the Järvselja Experi-
mental Forestry station in Tartumaa, SE Estonia (58◦16′ N
27◦16′ E), within a remote hemiboreal zone, far from major
anthropogenic disturbances (Noe et al., 2011; Fig. 1). The
site is equipped with a tower of 24 m height. The surround-
ing canopy is about 16–20 m in height and the remote hemi-
boreal forest consists of a mixture of tree species, with Nor-
way spruce (Picea abies) dominating. The climate is boreal

with a growing season of 170–180 days. More information
about the site can be found elsewhere (e.g. Bourtsoukidis et
al., 2014a; Noe et al., 2011, 2016).

The measurements were made between 3 and 17 Octo-
ber 2012. Sampling was done using a dynamic, automated
glass enclosure with measurement cycles of 36 s. The inlet
line (9.5 mm OD) was made of glass and was insulated and
heated to 70 ◦C. A dynamic exchange enclosure was used to
measure emission rates from a Norway spruce branch located
in the upper canopy at 16 m. While the focus of this study was
the quantification of emission rates of MEK from a Norway
spruce tree, ambient mixing ratios were derived as well us-
ing the box model described in Bourtsoukidis et al. (2014b).
The LOD and uncertainty of the PTR-MS were 0.04 ppb and
28 %, respectively.

Furthermore, at SMEAR Estonia, offline measurements
with a GC-MS were carried out for periods of 3 days each
in June and July 2012, with samples taken every 4 h at two
heights (2 and 20 m). Samples for GC-MS analysis were also
taken from cuvettes enclosing some common plant species at
the site (Table 1). In addition, VOC emissions from soil litter
were monitored monthly. The air samples were drawn into
multi-bed stainless steel cartridges (10.5 cm length, 3 mm in-
ner diameter, Supelco, Bellefonte, PA, USA) filled with Car-
botrap C 20/40 mesh (0.2 g), Carbopack C 40/60 mesh (0.1 g)
and Carbotrap X 20–40 mesh (0.1 g) adsorbents (Supelco).
Even though the site usually experiences low ozone mix-
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TT34

ATTO

T2

O3HP

SMEAR

CYPHEX

Red: primary anthropogenically affected
Green: primary biogenically affected

Figure 1. World map showing the location of the different sites. The names are colour-coded to show whether they have primarily
biogenic influence (green) or a primarily anthropogenic influence (red). Source: outline world map, http://www.outline-world-map.com/
political-white-world-map-b6a, last access: 1 September 2016.

ing ratios of 10–30 ppb (Noe et al., 2012), a catalytic Cu(II)
ozone scrubbing system (Sun et al., 2012) was applied. Three
constant-flow air sample pumps (1003-SKC, SKC Inc., Hus-
ton, TX, USA) and one multisample constant-flow air sample
pump (224-PCXR8, SKC Inc., Huston, TX, USA) allowed
four samples to be collected at the same time. Each sample
took 30 min with a flow of 200 mL min−1 concentrating 6 L
of ambient air onto the adsorbent. More information can be
found elsewhere (Noe et al., 2012).

2.4 Observatoire de Haute Provence, O3HP: rural
Mediterranean temperate forest (Provence, France)

The oak observatory (O3HP, https://o3hp.obs-hp.fr) at
the “Observatoire de Haute Provence” (OHP, http://www.
obs-hp.fr/welcome.shtml) is located within a rural Mediter-
ranean temperate forest in the French Mediterranean re-
gion, 60 km north of Marseille, the closest large city
(43◦55′54.0′′ N, 5◦42′43.9′′ E; Fig. 1). A 10 m mast was
set up inside the oak forest with a canopy height of ap-
proximately 5 m. The O3HP site is dominated by Quercus
pubescens Willd. (75 % of trees) and Acer monspessulanum
L. (25 %) forming a sparse canopy, while Cotinus coggy-
gria Scop. and other grass species constitute the understorey
canopy. The climate at the site is typical Mediterranean, with
dry and hot summers and humid and cool winters. More in-
formation about the site can be found elsewhere (Genard-
Zielinski et al., 2015; Kalogridis et al., 2014).

The measurements took place during 29 May–
12 June 2014 as part of the CANOPÉE project (Biosphere-
atmosphere exchange of organic compounds: impact of
intra-canopy processes). Ambient measurements were
carried out at 2 m (inside the canopy) on consecutive days
in intervals of 5 min. The 9.5 mm OD Teflon inlet lines were

insulated and heated above ambient temperature and had
no particle filter. The LOD and uncertainty of the PTR-MS
were 0.11 ppb and 20 %, respectively. In addition, light
non-methane hydrocarbons (from ethane to hexane) were
measured with a GC-FID (Chromatotec, Saint-Antoine,
France) in line with the PTR-MS as described in Zannoni et
al. (2016).

2.5 T2: mixed urban- and rainforest-influenced
environment (Amazon, Brazil)

The T2 site is part of a set of experimental sites within the
GoAmazon project to study the effect of the pollution plume
from the city of Manaus on the otherwise pristine Amazonian
atmosphere. The T2 site is located 8 km downwind, i.e. to
the west, of Manaus (3◦8′21.12′′ S, 60◦7′53.52′′W; Fig. 1).
Given its location, near Manaus and across the Rio Negro, air
mass transport to the sampling site is strongly modulated by a
river breeze, alternating between mostly biogenic conditions,
resulting from the surrounding forest, and the city emissions.
The climate is tropical and similar to that at the ATTO and
ZF2 sites.

The measurements for this study took place between
15 February and 15 November 2014. They were carried out at
12 m above the laboratory container with 30 min cycles. The
inlet line was made of insulated Teflon (9.5 mm OD) with-
out a PTFE particle filter. The LOD and uncertainty of the
PTR-MS were 0.02 ppb and ∼ 30 %, respectively.
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Figure 2. Hourly average diel cycles of MEK at the ATTO (left), SMEAR Estonia (middle) and O3HP (right) sites, for the period of
measurements (wet season 2014 for ATTO at 38 m October 2014 for SMEAR Estonia at 16 m, and May and June 2014 for O3HP at 2 m).
Hourly mean diel cycles of temperature and PAR are also shown in red and grey, respectively. Error bars represent the standard deviations.

2.6 CYPHEX: mixed marine, rural environment
influenced by aged air masses (Cyprus)

The Cyprus Photochemistry Experiment (CYPHEX) cam-
paign took place at a site located in the NW inshore part of
Cyprus, in the Paphos region (34◦57′50.0′′ N, 32◦22′37.0′′ E)
(Fig. 1). The site experiences mixed marine and rural emis-
sions influence. The climate is Mediterranean, warm and dry,
and shrubs and small trees dominate the sparse vegetation.

The measurements took place during July and Au-
gust 2014 without a single rain event. Instruments were in-
stalled inside containers and connected to a stack inlet that
reached up 5 m above the container roofs. Air was drawn
through the 8 m stack inlet of 0.5 m with high flow rate
(10 L min−1) to minimise wall losses. The subsampling in-
let line was made of Teflon (13 mm OD), was insulated and
heated to 35 ◦C, and had a PTFE inlet particle filter. The LOD
and uncertainty of the PTR-MS were 0.02 ppb and 11 %, re-
spectively.

3 Results

3.1 Sites dominated by biogenic emissions

All the pristine or remote sites studied were characterised
by relatively low mixing ratios of nitrogen oxides (NOx)
(< 3 ppb of nitrogen dioxide (NO2) for O3HP (Kalogridis
et al., 2014; Zannoni et al., 2016), 0.2–0.8 ppb of NOx for
SMEAR Estonia, and < 1 ppb NOx for the Amazon rainfor-
est (Kuhn et al., 2010)). The diel cycles of MEK at these
sites followed a comparable pattern (Fig. 2), where MEK
mixing ratios were highest in the middle of the day, fol-
lowing the maxima of light and air temperature. The dom-
inant source at these sites was considered to be biogenic.
Mixing ratios of MEK correlated well with ambient tem-
perature (r2

= 0.57 (ATTO), r2
= 0.83 (SMEAR), r2

= 0.47
(O3HP)), while it was less well correlated with photosynthet-
ically active radiation (PAR) (r2

= 0.23 (ATTO), r2
= 0.26

(SMEAR), r2
= 0.67 (O3HP)). This suggests that ambient

temperature predominantly influenced MEK emission rates
from plants.

The vertical observations at ATTO revealed a strong diel
variability in the magnitude and vertical distribution of MEK
mixing ratios throughout the forest canopy and in the atmo-
sphere above. Figure 3 shows an example of an hourly verti-
cal profile of MEK for 1 day (7 March 2014) from 13:00 to
15:00 LT, from the ground to the atmosphere, suggesting that
the canopy top is the major source of MEK at the site on such
days. Similar concentration gradients were found for 83 %
(for the afternoon hours) and 45 % (for the morning hours)
of all days of measurements. In addition, MEK mixing ratios
decreased significantly beneath the canopy towards the for-
est floor, possibly due to dry deposition or generally smaller
vegetation emissions due to less light and temperature. How-
ever, a possible production from the ozonolysis of alkanes
or bidirectional plant exchange cannot be ruled out. For a
seasonal comparison, Yáñez-Serrano et al. (2015) reported
0.43 ppb of MEK for the dry season (September 2013) and
0.13 ppb of MEK for the wet season (February–March 2013)
at 38 m. Curiously, at 24 m, MEK mixing ratios for the wet
season were 0.38 ppb, very close to the measured values for
this study. Possible differences in canopy structure temper-
ature and solar radiation among years may be the cause for
this discrepancy.

At the TT34 rainforest site, ecosystem-scale fluxes were
directly calculated from the PTR-MS measurements using
the method of virtual disjunct eddy covariance (vDEC) (Karl
et al., 2001; Fig. 4). The fluxes averaged over the entire 11-
month measurement period (covering parts of both the dry
and the wet season) clearly demonstrate an emission of MEK
by the rainforest during daytime with the highest emissions
around noon, and no emissions during nighttime. In terms
of seasonal variation, MEK mixing ratios were observed to
be higher during the dry season (September–October 2013,
∼ 0.6 ppb) and lower during the wet season (January–April,
∼ 0.2 ppb) (data not shown).
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Figure 3. Hourly average vertical profiles of MEK mixing ratios
at ATTO for 7 March 2014 for 13:00 LT (dashed lines), 14:00 LT
(dotted and dashed lines) and 15:00 LT (thick lines). Error bars of
vertical profiles are the standard deviations.

Online ambient mixing ratios of MEK, as measured by the
PTR-MS in the hemiboreal forest at the SMEAR Estonia site
during autumn 2012, were on average 0.15± 0.04 ppb (range
0.09–0.25 ppb). These mixing ratios are almost a factor of 2
lower than ATTO and O3HP during daytime hours. This dif-
ference among boreal forests, with growing season ending in
October, broadleaved tropical (ATTO) and temperate (O3HP)
forests could be partly related to the temperature dependence
of MEK emissions apparently common among all biogenic
sites.

The rural Mediterranean temperate forest site at O3HP dif-
fers significantly from the tropical rainforest (ATTO, TT34)
or the hemiboreal forest (SMEAR Estonia, Fig. 1). The trees
at O3HP are predominantly Quercus pubescens, a high iso-
prene emitter (Keenan et al., 2009). At this site, the exchange
of air through the forest canopy is enhanced because the
canopy is sparse. As shown in Fig. 2, ambient MEK mix-
ing ratios measured inside the canopy (2 m) increased with
temperature in the morning. During the day, increased forest
emissions of MEK seemed to balance the rise of the bound-
ary layer depth, resulting in a plateau until sunset. The fluc-
tuation of MEK after sunset may be understood as a result of
a ceased source revealing the deposition as it can scarcely be
explained by gas-phase chemistry or the reduced nocturnal
boundary layer height.

During the CANOPÉE campaign at the O3HP site, addi-
tional GC-FID samples were taken at 2 m, allowing mea-
surements of several anthropogenic light hydrocarbons, in-
cluding n-butane. This sampling was performed in parallel to
the PTR-MS measurements. All samples contained n-butane,
which typically has an anthropogenic origin with an average
mixing ratio of 0.071± 0.09 (much lower mixing ratios than
MEK), indicating there is no significant source of n-butane
nearby. Hence, MEK at the O3HP site could not be related to

Figure 4. Hourly average MEK fluxes at the TT34 tower for the
period September 2013–July 2014. The light-green circles repre-
sent means and associated error bars are 1 standard deviation. The
central line of the box plots (dark green) indicates the median, the
bottom and top lines are the 25th and 75th percentile, respectively,
and whiskers are the 5th and 95th percentiles. Red dashed lines in-
dicate the propagated limit of detection calculated according to the
method outlined by Langford et al. (2015).

the atmospheric oxidation of n-butane. Furthermore, the ab-
sence of a correlation with other anthropogenic tracers leads
us to conclude that MEK at this site was predominantly of
biogenic origin.

The measurements obtained by PTR-MS at the presented
sites dominated by biogenic emissions were occasionally
confirmed by GC-FID and GC-MS, which are compound-
selective. At ATTO the same range of MEK mixing ratios
for the same hour of the day and height for the GC-FID and
the PTR-MS measurements was found, indicating that the
PTR-MS signal was only or at least dominated by MEK.
To identify sources, canopy measurements at SMEAR Es-
tonia were complemented by emission measurements us-
ing cuvettes with GC-MS identification. Common hemibo-
real forest species, such as Quercus robur, Tilia cordata,
Sorbus aucuparia, Betula pubescens and Picea abies, were
screened for VOC emissions. The highest emissions of MEK
were found from Tilia cordata and Picea abies (Table 2).
The data are consistent with those reported by Bourtsoukidis
et al. (2014b), who measured an emission rate of MEK
of 2.6± 2.2 ng g−1

(dw needles) s−1 from Picea abies using PTR-
MS. The GC-MS technique obtained a very similar value
of 2.3 ng g−1

(dw needles) s−1. MEK emissions from Picea abies
were relatively small compared to other VOCs emitted by the
same plant species such as total monoterpenes and acetone,
which reached 93.2 and 27.6 ng g−1

(dw needles) s−1, respectively
(Bourtsoukidis et al., 2014b). In addition to plant sources,
the emissions rates of MEK from leaf litter were quantified
using a GC-MS. MEK litter emissions, with a monthly av-
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Table 2. Emission rates of MEK for typical hemiboreal plant species and soil litter measured by GC-MS technique at the SMEAR site.

Plant species and Mean Standard Standard Median Number of
soil cuvettes µg m−2 h−1 deviation error µg m−2 h−1 data points

µg m−2 h−1 µg m−2 h−1 for statistics

Quercus robur 8.12 – – – 1
Tilia cordata 12.93 4.89 3.46 12.93 3
Sorbus aucuparia 9.08 – – – 1
Betula pubescens 9.36 5.10 2.94 8.21 3
Picea abies 13.76 5.05 2.91 15.51 3
Leaf litter 7.00 3.37 2.11 6.58 24

erage of 7 µg m−2 h−1, were of comparable magnitude to the
emissions rates of MEK from the screened hemiboreal forest
tree species, including Quercus robur or Sorbus aucuparia,
which emitted 8–9 µg m−2 h−1 of MEK (Table 2).

3.2 Anthropogenically influenced sites

Anthropogenically influenced sites are characterised by air
masses that have passed over polluted cities or industrialised
regions. This air typically has elevated mixing ratios of NOx ,
other products of fossil fuel combustion such as aromatic
compounds, and carbon monoxide (CO), as well as higher
aerosol loading. Regional biomass burning plumes can also
be a source of anthropogenic input to air masses and are here
considered anthropogenic.

The T2 dataset was sorted for polluted periods (air masses
loaded with CO, black carbon, high aerosol loading, aro-
matic compounds) and non-polluted periods. Periods with
CO higher than 130 ppb during the tropical wet season and
higher than 160 ppb during the dry season were considered
polluted. As shown in Fig. 5, MEK mixing ratios strongly
increase with pollution. The T2 site in Brazil is located on
the bank of the Rio Negro and is affected by both the tropical
rainforest (biogenic) and the megacity of Manaus (anthro-
pogenic). The location of the T2 site downwind of Manaus
and upwind of the rainforest minimises the biogenic influ-
ence. MEK mixing ratios were generally lower for the clean
conditions at T2 than mixing ratios found at ATTO or TT34
(Figs. 2 and 5). Nevertheless, the mixing ratios of MEK dur-
ing polluted conditions (0.7± 0.33 ppb during dry season at
13:00 LT) reached or even exceeded those at the other trop-
ical rainforest sites (0.32± 0.13 ppb at 13:00 LT for ATTO
and 0.45± 0.28 ppb at TT34; Figs. 2 and 5). Presumably, an-
thropogenically affected air as transported across the Rio Ne-
gro from the city of Manaus (∼ 2 million inhabitants; IBGE,
2014) generated a plume with a mixture of anthropogenic
MEK directly emitted in Manaus or MEK formed by oxida-
tion of, for example, n-butane during transport. The general
trend observed in Fig. 6 is an increase in MEK mixing ratios
when easterly winds came from Manaus (located to the east
of T2). However, there were times when winds blew from the
north, and incident air masses passed through large rainfor-

est areas, in which TT34 is included; these air masses then
crossed the river and arrived at the site. During these times,
when air masses were mostly dominated by biogenic emis-
sions, MEK enhancement reached on average 0.2 ppb.

Mixing ratios of MEK at T2 were found to be significantly
enhanced during polluted conditions for both dry and wet
season (Fig. 7). The relative enhancement within polluted pe-
riods at 13:00 LT ranged around a factor of 1.5 for the wet
season and of 1.8 for the dry season. During the dry sea-
son, the day-to-day variability was more intense, as reflected
by the standard deviations which increased by 360 % for the
clean conditions and 410 % for the polluted conditions rela-
tive to the wet season clean and polluted values, respectively.
This may indicate a difference in the sources and sinks reg-
ulating MEK mixing ratios among the different seasons. Ex-
amples of this difference could be an increase in MEK due
to biomass burning, more abundant during the dry season, or
changes in the deposition rates due to changes in rain fre-
quency.

The CYPHEX campaign took place at Ineia, north-west
Cyprus, at a location that has very little significant vegeta-
tion nearby. The air masses that pass through the site are ei-
ther from western Europe, passing across France and Spain
and then the Mediterranean Sea, or from south-eastern Eu-
rope (e.g. Turkey, Greece). During the CYPHEX campaign,
the hourly median MEK mixing ratios did not show any dis-
tinct diel cycle or relations to temperature or net radiation
(Fig. 5), strongly suggesting that no significant local sources
were present. Furthermore, backward air mass trajectories,
as calculated by the HYSPLIT model (NOAA Air Resources
Laboratory, USA; Stein et al., 2015) (Fig. 8), can be used
to delineate times when Cyprus was affected by easterly and
westerly flow. These trajectories were started at 650 m height
with the ensemble mode. The periods (east, west) were cho-
sen on the basis of the FLEXPART model. Further informa-
tion can be found in Derstroff et al. (2016). On average, east-
erly air masses contained 0.13± 0.03 ppb, whereas westerly
masses contained 0.08± 0.02 ppb. This difference can be due
to differences in source strength, to the greater duration of
boundary layer transport from the west and hence marine up-
take, or to photochemical loss during transport.
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3.3 Compilation of measurement data

In order to investigate the origin and characteristics of MEK
in the atmosphere, we calculated the correlation coeffi-
cient (r2) between the mixing ratios of MEK and other co-
measured VOC species for each site (Table 3). This coeffi-
cient is the ratio of the variability in the MEK mixing ra-
tios to the variability in the other VOC mixing ratios avail-
able for each site. The correlation between MEK and other
VOC helps to identify possible similarities such as com-
mon sources, sinks, chemical mechanisms, or transport pro-
cesses. However, this comparison does not necessarily claim
links between the various compounds. Acetone, acetalde-
hyde, monoterpenes, isoprene, isoprene oxidation products
and methanol are regarded as being mainly of biogenic origin
especially in forested areas (Kesselmeier and Staudt, 1999;
Laothawornkitkul et al., 2009). Nevertheless, acetone, ac-
etaldehyde and methanol may have additional sources in-
cluding direct and secondary anthropogenic emissions that
cannot be neglected even at clean environments (Goldstein
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Figure 7. Hourly average concentrations of MEK in ppb for the
clean conditions (blue) and the polluted conditions (red) at the T2
site. Dashed lines represent the dry season and thick lines represent
the wet season. Error bars represent the standard deviation.

and Schade, 2000; Yáñez-Serrano et al., 2015). Compounds
such as benzene, toluene, xylene and acetonitrile are con-
sidered typical anthropogenic tracers (Andreae and Merlet,
2001; Finlayson-Pitts and Pitts Jr., 1997).

In general, biogenic sites, namely ATTO, SMEAR Esto-
nia, and O3HP, showed relatively high correlations between
MEK and almost all biogenic VOCs (r2 > 0.5). Exceptions
appear in the r2 values for O3HP. For instance, the high-
est correlation coefficient (r2) was found for MEK and ace-
tone at the SMEAR site (r2

= 0.97). A high correlation co-
efficient could indicate that the atmospheric processes gov-
erning acetone and MEK abundance are likely very simi-
lar (Zhou and Mopper, 1993). In SMEAR Estonia, overall
high correlations were found between MEK and the oxy-
genated compounds, acetone, acetaldehyde and methanol, as
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West East East East West West West 

Figure 8. Timeline of MEK mixing ratios divided into periods when the air was coming from either eastern or western Europe. The HYSPLIT
backward trajectories from 14 July and 28 August 2014 are shown based on the origin of the air masses. The black line represents the average
of the whole campaign.

well as with monoterpenes and isoprene. At ATTO, corre-
lations were only slightly lower. The correlation coefficient
(r2) calculated for the O3HP observations were generally
lower than for ATTO and SMEAR Estonia, further influ-
enced by the higher turbulent mixing due to sparser vege-
tation, leading to fastest transport to the atmosphere. Never-
theless, the good correlations of MEK with typical biogeni-
cally emitted compounds, such as isoprene, isoprene oxida-
tion products, monoterpenes, methanol and acetone, corrob-
orated the biogenic origin of MEK emissions at the biogenic
sites.

At the anthropogenically influenced sites, T2 and
CYPHEX, correlation coefficient (r2) for the biogenic com-
pounds were generally lower, apart from the r2 (0.64 and
0.45, respectively) between MEK and acetone. It is important
to note that although T2 is a mixed anthropogenic and bio-
genic site, the correlation coefficient (r2) was high for MEK
and acetone but very low for the rest of the biogenic com-
pounds. For the anthropogenic compounds, T2 had an r2 of
0.27 for MEK and acetonitrile and MEK and xylene. Further-
more, the data from the Cyprus site showed poor correlation
of MEK with any biogenic compound but a correlation coef-
ficient of r2

= 0.58 for MEK and toluene, an anthropogenic
tracer.

4 Discussion

4.1 PTR-MS measurements

Most of the measurements in this study were performed
with a quadrupole PTR-MS, a technique that monitors se-
lected VOC ions, online and with fast time response. A dis-
advantage is the separation by masses with a mass resolu-
tion of only 1 amu. For some masses, several compounds
and/or compound fragments may be detected as one signal.
The quadrupole PTR-MS signal at m/z 73 is attributed to
MEK, but may have contributing signals of water clusters
(de Gouw and Warneke, 2007), butanal (Inomata et al., 2010;
McKinney et al., 2011; Slowik et al., 2010; Warneke et al.,
2007), acrylic acid (de Gouw et al., 2003), 2-methyl propanal
(Baraldi et al., 1999; Jardine et al., 2010), and methyl glyoxal
(Holzinger et al., 2007; Jordan et al., 2009b). We have tried
to take into account possible interferences by using different
analytical techniques and supplementary information. At the
SMEAR Estonia site, the accompanying GC-MS observa-
tions validated the signal for MEK. Additionally, the GC-FID
samples taken at ATTO corroborated the signal for MEK at
this site. Nevertheless, we try to give a short overview below
about the interferences of other trace gases with the PTR-MS
identification of MEK.
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Table 3. Correlation coefficients (r2) of MEK with other co-measured VOC at the sites investigated. The correlations above 0.5 are colour-
coded with warmest colours for highest correlation coefficients. Correlation coefficients (r2) for the TT34 site in Amazonia are missing due
to lack of data.

Table 2: Emission rates of MEK for typical hemi-boreal plant species and soil litter measured by GC-MS 

technique at the SMEAR site. 

Plant species and soil 

cuvettes 
Mean           

µg m-2 h-1 

Standard 

deviation 

µg m-2 h-1 

Standard error            

µg m-2 h-1 

Median 

µg m-2 h-1 

Number of data 

points for statistics 

Quercus robur 8.12 - - - 1 

Tilia cordata 12.93 4.89 3.46 12.93 3 

Sorbus aucuparia 9.08 - - - 1 

Betula pubsecens 9.36 5.10 2.94 8.21 3 

Picea abies 13.76 5.05 2.91 15.51 3 

Leaf litter 7.00 3.37 2.11 6.58 24 

 

Table 3: Correlation coefficients (r2) of MEK with other co-measured VOC at the sites investigated. The 

correlations above 0.5 are colour coded with warmest colours for highest correlation coefficients. Correla-

tion coefficients (r2) for the TT34 site in Amazonia are missing due to lack of data. 
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TT34 - - - - - - - - - - 

SMEAR 0.97 0.89 0.72 - 0.90 0.84 - - - - 

ATTO 0.89 0.62 0.75 0.75 0.51 0.77 0.49 0.07 0.27 0.04 

O3PH 0.61 0.62 0.12 0.41 0.57 0.14 0.19 0.03 0.15 0.00 

Anthropo-

genic sites 

T2 0.64 0.21 - 0.41 0.27 0.06 0.27 0.11 0.07 0.27 

CYPHEX 0.45 0.42 0.07 0.10 0.25 0.08 0.00 0.58 0.09 - 

 

 

Table 3: Literature compilation of MEK mixing ratios measurements in different ecosystems around the 

globe from a wide range of atmospheric environments.  

Reference 
MEK mixing 

ratio in ppb 
Type of environment Reported data 

Height from 

surface 
Time of measurement 

Zhou and Mopper, 1993 0.03 Caribbean ocean Cruise data, total average  10m October 1988 

Ho et al., 2002 0.14 Hong Kong urban centre annual average 6m April 2000-April 2001 

Cecinatto et al., 2002 0.15 Algeria rural residential site  Daytime average Not specified January 2001 

Cecinatto et al., 2002 0.23 Algeria rural residential site Daytime average Not specified August 2001 

Feng et al., 2004 2.11 China urban site Evening time Not specified August–September 2002 

Hellen et al., 2004 0.073 Finnish boreal forest site Diel average 1 m March-April 2003 

Sighn et al., 2004 0.12 Tropospheric pacific ocean Non specified 0-2km February-April 2001 

Legreid et al., 2007 0.2* Swiss urban site Annual average 8 m Throughout 2005 

Davison et al., 2007 0.8* Swiss permanent grassland site Daytime average  1.2 m June 2005 

Methyl glyoxal is a likely contributor to the observed
signal at the PTR-MS protonated mass m/z 73, especially
in areas where there are high levels of isoprene. It is
formed following the oxidation of methyl vinyl ketone and
methacrolein, which are both isoprene oxidation products
(Calvert and Madronich, 1987; Lee et al., 2006). Supported
by GC-FID measurements and relatively low isoprene lev-
els during the wet season (Yáñez-Serrano et al., 2015), we
can assume that the contribution of methyl glyoxal to this
mass was insignificant at the rainforest sites (ATTO and
TT34). Despite the high isoprene emissions at O3HP, the cor-
relation between MEK and the isoprene oxidation products
was low (r2

= 0.41), suggesting that methyl glyoxal did not
significantly contribute to the signal at m/z 73. During the
CYPHEX campaign the PTR-ToF-MS could unambiguously
distinguish between MEK and methyl glyoxal (at 73.0648
and 73.0284 amu, respectively).

Even though a contribution of butanal to m/z 73 of up
to 65 % (Lindinger et al., 1998) and 20 % (Williams et al.,
2001) has been reported previously, most butanal fragments
on m/z 57 (Ionicon Analytic GmbH). Acrylic acid, a marine
compound (Liu et al., 2016) that may interfere at m/z 73,
was probably not of relevance at sites under biogenic in-
fluence. However, in the case of anthropogenically influ-
enced sites, such as T2, interferences may have been of rele-
vance. Karl et al. (2007) and Ciccioli et al. (2014) measured
tropical biomass burning emissions and found that m/z 73
is comprised of 74 % MEK and 23 % 2-methyl propanal
(73.1057 amu). Even though none of the sites presented in
this study was severely influenced by biomass burning, we
cannot completely rule out a possible direct emission of
2-methyl propanal by plants, which is of lower magnitude
than from biomass burning (Hafner et al., 2013; Jardine et
al., 2010; Karl et al., 2005a). Due to the standard operation
conditions of the PTR-MS under our measurement condi-
tions, we neglected water clusters as they are regarded to

be insignificant (McKinney et al., 2011; Yáñez-Serrano et
al., 2015). To summarise these issues, we note that several
studies have concluded m/z 73 to originate from MEK only
(Bourtsoukidis et al., 2014b; Crutzen et al., 2000; De Gouw
et al., 1999, 2000; Holzinger et al., 2000; Karl et al., 2001,
2005a; Kim et al., 2015; Millet et al., 2015; Steeghs et al.,
2004). Based on these considerations and the similarity of
magnitudes measured by the PTR-MS as compared with the
GC results, we assume m/z 73 is representative of the atmo-
spheric MEK present.

4.2 The biogenic MEK

The data obtained at the biologically influenced sites demon-
strated that MEK was emitted by vegetation. This is clearly
supported by the canopy-scale net flux observations of MEK
at the TT34 rainforest site (Fig. 4) as well as the diel cy-
cles of the mixing ratios at the other biogenically influenced
sites (Fig. 2). Furthermore, the leaf-level cuvette measure-
ments at SMEAR Estonia also corroborated the MEK emis-
sion by vegetation. In addition, a contribution by other bio-
genic sources such as dead and decaying plant matter was
also observed at SMEAR Estonia to be of similar magnitude
to boreal plant species emissions and indicative of a source
from plant litter, in accordance with the results from Warneke
et al. (1999) that measured MEK emission from the abiotic
processes of plant decaying matter. This is not the case for the
tropical sites where vertical profiles show that canopy emis-
sions dominate.

High correlation coefficients suggested strong relations
between the emission processes for MEK and other bio-
genic compounds (Table 3). A similar approach has been
used previously by Goldstein and Schade (2000) to unveil
the sources of acetone. Similarly, Davison et al. (2008) found
a high correlation coefficient between MEK and acetone of
r2
= 0.87 and a relatively poor correlation between MEK
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and monoterpenes (r2
= 0.54). They surmised that good cor-

relations indicated a common origin for biogenically emit-
ted compounds. Furthermore, a resemblance of the pattern
of acetone and MEK has been reported for the ATTO site be-
fore (Yáñez-Serrano et al., 2015). In our study, we found high
correlation coefficients (r2) for MEK with acetone and MEK
with temperature, and lower r2 for MEK and compounds
such as isoprene and monoterpenes for all the biogenic
sites (Table 3). This could indicate that MEK forest emis-
sions are more related to processes resembling acetone emis-
sions and temperature-dependent processes, rather than light-
and temperature-dependent emission mechanisms, as for iso-
prene and monoterpenes (Jardine et al., 2015; Kesselmeier
and Staudt, 1999).

Plant physiological production pathways have been re-
ported for MEK formation. MEK can be formed, similarly
to acetone, as a by-product of a cyanohydrin lyase reac-
tion during cyanogenesis (Fall, 2003; Vetter, 2000). This
chemical defence pathway was also identified in clover by
Kirstine et al. (1998) and de Gouw et al. (1999) as a re-
sult of mechanical stress, and can be of special importance
for tropical rainforests (Miller et al., 2006). On the other
hand, in places such as SMEAR Estonia, dominating plant
species are not cyanogenic, and other processes for MEK
formation are probably more dominant. In pine trees, ace-
tone is produced from light-dependent and independent pro-
cesses that can be associated with the decarboxylation of
acetoacetate occurring in microorganisms and animals (Fall,
2003), from oxidation of fatty acids leading to ketone emis-
sions (Niinemets et al., 2014), from pyruvic acid leading to
acetyl-CoA (Kesselmeier and Staudt, 1999), or from unchar-
acterised biochemical reactions (Fall, 2003). Such processes
could also be related to MEK emissions.

Even though extensive laboratory measurements are
needed to identify the dominant plant process or processes
responsible for MEK emission, this study demonstrated the
role that temperature can exert on such emissions. Hence,
forests around the world may act as very different sources
for atmospheric MEK. This can be seen for boreal forests
(SMEAR Estonia), with distinctly lower temperatures, where
MEK levels were significantly lower. However, other fac-
tors must be considered (Schade et al., 2011), such as leaf
area index (LAI) and plant species composition, as well as
the environmental factors, water availability and mechanical
stress, the latter having already been observed by de Gouw
et al. (1999) to act as a driver for MEK emissions.

Due to its relatively long atmospheric lifetime (∼ 5 days
for the reaction with OH; Grant et al., 2008), MEK is
expected to accumulate in the atmosphere until removal.
Hence, atmospheric mixing ratios can reflect seasonality and
changes in dominating sources, affected by radiation, tem-
perature and phenology, from more biogenic dominance dur-
ing the wet season to transport phenomena and oxidation
processes of primarily emitted compounds from regional
biomass burning, as was seen in 2013 at the ATTO site

(Yáñez-Serrano et al., 2015). Moreover, a possible produc-
tion from certain terpenes through ozonolysis cannot be ex-
cluded (Holzinger et al., 2005). Additionally, the canopy
structure seems to be important for air mixing and trans-
port, as seen for the O3HP site with an apparently faster
mixing due to sparser vegetation and consequent dampen-
ing of the amplitude of the diel cycle. Furthermore, due to
its oxygenated nature, partitioning to and from aqueous sur-
faces is likely, including deposition and surface reactions. Its
high water solubility might allow dissolution within leaf wa-
ter (Sander, 2015), triggering bidirectional exchange of MEK
(Karl et al., 2005b; McKinney et al., 2011; Niinemets et al.,
2014). Due to its high solubility in water and its relatively
long lifetime, MEK could potentially influence gas–aqueous
reactions on aerosol surfaces (Nozière, 2005). This has been
shown indirectly by the production of methyl glyoxal after
its oxidation by OH, having implications for the formation of
organics in the aerosol aqueous phase (Rodigast et al., 2016).

4.3 The anthropogenic MEK

A clear difference could be observed between the anthro-
pogenic and biogenic influenced sites presented in this study.
The T2 site represented a site with mixed influence by urban
area and tropical rainforest. Affected by anthropogenic and
biogenic sources, ambient mixing ratios of MEK were higher
than at the pristine ATTO rainforest site. Polluted episodes
(from the Manaus plume) with an increase in MEK could be
distinguished for both the wet and the dry season, suggest-
ing a short-range transport of air masses. On the other hand,
when the wind is blowing from the north, MEK mixing ratios
were also present, showing an influence from biogenic forest
emissions (Fig. 7), thus having a mix of biogenic and anthro-
pogenic influence at the T2 site. A strong seasonality of MEK
mixing ratios at T2 reflected biomass burning as a common
occurrence in the Amazon region during the dry season (Ar-
taxo et al., 2013). In addition to MEK, a higher contribution
of butanal affecting m/z 73 (Inomata et al., 2010; Karl et al.,
2007) might be possible, although MEK has been reported to
have a much higher emission factor (range from 0.17 to 0.83)
than butanal (range from 0.04 to 0.21) for biomass burning
(Andreae and Merlet, 2001).

We regarded CYPHEX as an anthropogenically influenced
site with weak or no apparent direct sources but which
was affected by anthropogenic air masses after long-range
transport over marine areas. Losses by transport over the
sea and chemical decomposition led to the lowest averaged
MEK mixing ratios of all compared sites. Correlation co-
efficients (r2) of MEK with the biogenic tracers were rela-
tively poor for T2 and CYPHEX. However, correlations were
also poor for the anthropogenic tracers, although slightly bet-
ter than at the biogenic sites. MEK showed highest corre-
lation with acetone, indicating similar sources and fate in
air mixing and chemistry processes. MEK transported over
long distances (10 days) is lost by photochemical aging or
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Table 4. Literature compilation of MEK mixing ratios measurements in different ecosystems around the globe from a wide range of atmo-
spheric environments.

Reference MEK mixing Type of Reported Height from Time of
ratio in ppb environment data surface measurement

Zhou and Mopper
(1993)

0.03 Caribbean Sea Cruise data, total
average

10 m October 1988

Ho et al. (2002) 0.14 Hong Kong urban cen-
tre

Annual average 6 m April 2000–April
2001

Cecinato et
al. (2002)

0.15 Algerian rural residen-
tial site

Daytime average Not specified January 2001

Cecinato et
al. (2002)

0.23 Algerian rural residen-
tial site

Daytime average Not specified August 2001

Feng et al. (2004) 2.11 Chinese urban site Evening time Not specified August–
September
2002

Hellén et al. (2004) 0.073 Finnish boreal forest
site

Diel average 1 m March–April
2003

Sighn et al. (2004) 0.12 Tropospheric Pacific
Ocean

Not specified 0–2 km February–April
2001

Legreid et al. (2007) 0.2a Swiss urban site Annual average 8 m Throughout 2005

Davison et al. (2008) 0.8b Swiss permanent grass-
land site

Daytime average 1.2 m June 2005

Grant et al. (2008) ∼ 0.5 Senegalese rural site Daytime average 6 m September 2006

Jordan et al. (2009b) 0.13 USA mixed rural site Interannual median
from 2005 to 2008

12 m From 2005 to
2008

Kim et al. (2015) ∼ 4 South Korean semi-
rural site

Diel average 15 m June 2013

Yáñez-Serrano et
al. (2015)

0.43 Brazilian tropical rain-
forest site (ATTO)

Daytime average 38 m September 2013

Yáñez-Serrano et
al. (2015)

0.13 Brazilian tropical rain-
forest site (ATTO)

Daytime average 38 m February–March
2013

This study 0.39 Brazilian tropical rain-
forest site (ATTO)

Daytime average 38 m February–March
2014

This study 0.39 Brazilian tropical rain-
forest site (TT34)

Daytime average 41 m September
2013–July 2014

This study 0.19 Hemiboreal forest site
(SMEAR Estonia)

Daytime average 16 m October 2012

This study 0.30 French Mediterranean
forest (O3HP)

Daytime average 2 m May–June 2014

This study 0.13 Brazilian mixed tropi-
cal rainforest site (T2)

Daytime average 14 m February–
October 2014

This study 0.11 Cyprian rural site
(CYPHEX)

Daytime average 8 m July–August
2014

a Average from different seasons reported. b Average of different conditions cutting, a day after cutting and removing hay and a day after removing hay.
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deposition as evidenced by the lowest values reported from
CYPHEX. This is despite known secondary photochemical
sources, i.e. n-butane oxidation (Katzenstein et al., 2003;
Kwok et al., 1996). Interestingly, even under polluted condi-
tions, MEK did not correlate with aromatic compounds, ex-
cept during CYPHEX, although this correlation deteriorated
in the more aged westerly air masses. This can only be under-
stood as a result of a very complex mixture of anthropogenic
sources of MEK which vary from direct emission by indus-
try (Legreid et al., 2007), gasoline combustion (Verschueren,
1983), biomass burning (Andreae and Merlet, 2001) and ve-
hicular emissions (Brito et al., 2015). Furthermore, chemical
processing during transport may contribute, such as oxida-
tion of n-butane; however, the longer transport times during
CYPHEX from the west corresponded to lower values.

5 Remarks and conclusions

The comparison of MEK mixing ratios in different parts of
the world is necessary in order to understand how this ubiq-
uitous compound occurs and behaves in the atmosphere. To
summarise, Table 4 aims to provide a numerical compari-
son of MEK mixing ratios reported around the globe. While
MEK mixing ratios in our study are relatively constant, MEK
has been measured in many different ecosystems ranging
from 0.073 ppb to 4 ppb. Therefore, it is important to con-
sider the variability in this compound as MEK can lead to
PAN and ozone formation in the atmosphere (Pinho et al.,
2005). Photochemical odd-hydrogen production in the up-
per troposphere (Atkinson, 2000; Baeza Romero et al., 2005;
De Gouw et al., 1999) can further enhance the MEK ozone
forming potential (Folkins et al., 1998; Prather and Jacob,
1997). Of the widely used atmospheric chemistry models,
only GEOS-Chem explicitly computes MEK but only with
regard to anthropogenic origin. On the basis of the data pre-
sented here from forest sites, it is necessary for atmospheric
chemistry models to also include biogenic MEK emissions
to better estimate its effects on the environment. Sites under
biogenic influence showed marked diel variability, matching
biogenic VOC emissions and temperature. Structural forest
features seem to affect turbulent mixing and diluting of trace
gases like MEK, as in the case of O3HP with patchy vegeta-
tion. MEK seemed to be produced in plants in a similar fash-
ion to acetone, likely released during mechanical stress. Pos-
sible pathways for productions in plants are oxidation of fatty
acids, cyanogenesis, production from pyruvic acid leading to
acetyl-CoA, and light-dependent and independent processes
that can be associated with the decarboxylation of acetoac-
etate occurring in microorganisms and animals.

This study presents the first compilation and compari-
son of ambient measurements of MEK at different sites.
MEK patterns and mixing ratios differ around the globe
depending on sources and transport. Vegetation and litter
have been identified as sources of MEK and magnitude of
sources varied among the tropical rainforest, the Mediter-
ranean temperate forest and the hemiboreal forest following a
likely temperature dependence. However, via different filter-
ing methodologies (CO filtering and backward trajectories),
the anthropogenic input from polluted regions, such as the
mixed urban and tropical rainforest and mixed marine envi-
ronment, is often found to be the dominant contribution.

6 Data availability

Even though the data are still not available in any public
repository, as the authors are still working on other parts of
the data collected during the campaigns, the data are avail-
able upon request from the main author.
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