83 research outputs found

    Infliximab Does Not Promote the Presence of Collagenolytic Bacteria in a Mouse Model of Colorectal Anastomosis

    Get PDF
    BACKGROUND: Previous work from our group has suggested a pivotal role for collagenolytic bacteria in the development of anastomotic complications. Tumor necrosis factor antagonists are a mainstay of treatment for patients with inflammatory bowel disease. The reported impact of these agents on key surgical outcomes such as anastomotic leak has been inconsistent. The objective of this study is to assess the impact of infliximab on the anastomotic microbiome in a mouse model of colon resection. DESIGN: BALB/c mice underwent colon resection with primary anastomosis. Mice were randomly assigned to receive either an intraperitoneal dose of saline (control) or 10 mg/kg of infliximab for 8 weeks prior to surgery. On postoperative day 7, the animals were sacrificed. Anastomotic tissues were analyzed by histology with TUNNEL staining as a marker of epithelial apoptosis. In order to assess compositional and functional changes of the local microbiome, anastomotic tissues were further analyzed by 16S rRNA V4 region sequencing and for the presence of collagenolytic strains that may impair anastomotic healing. The main outcome measures were microbiome community structure and the presence of collagenolytic bacteria. RESULTS: Infliximab-treated mice demonstrated an increase in epithelial apoptosis, consistent with the expected drug effect. Although infliximab modified the perianastomotic microbiome, no increase in the presence of collagenolytic bacteria was observed. CONCLUSIONS: Infliximab did not promote the emergence of collagenolytic bacteria or demonstrably impair anastomotic healing in a mouse model of colon resection and anastomosis

    Insights into the pathogenesis of ulcerative colitis from a murine model of stasis-induced dysbiosis, colonic metaplasia, and genetic susceptibility

    Get PDF
    Author Posting. © The Author(s), 2016. This is the author's version of the work. It is posted here by permission of American Physiological Society for personal use, not for redistribution. The definitive version was published in American Journal of Physiology-Gastrointestinal and Liver Physiology 310 (2016): G973-G988, doi:10.1152/ajpgi.00017.2016.Gut dysbiosis, host genetics, and environmental triggers are implicated as causative factors in inflammatory bowel disease (IBD), yet mechanistic insights are lacking. Longitudinal analysis of ulcerative colitis patients following total colectomy with ileal anal anastomosis (IPAA) where >50% develop pouchitis, offers a unique setting to examine cause vs. effect. To recapitulate human IPAA, we employed a mouse model of surgically created blind self-filling (SFL) and self- emptying (SEL) ileal loops using wild-type (WT), IL-10 KO (IL10), and TLR4 KO (T4), and IL10/T4 double KO mice. After 5 weeks, loop histology, host gene/protein expression, and bacterial 16s rRNA profiles were examined. SFL exhibit fecal stasis due to directional motility oriented towards the loop end, whereas SEL remain empty. In wild type mice, SFL, but not SEL, develop pouch-like microbial communities without accompanying active inflammation. However, in genetically susceptible IL-10-/- deficient mice, SFL, but not SEL, exhibit severe inflammation and mucosal transcriptomes resembling human pouchitis. The inflammation associated with IL- 10-/- required TLR4, as animals lacking both pathways displayed little disease. Furthermore, germ-free IL10-/- mice conventionalized with SFL, but not SEL, microbiota populations develop severe colitis. These data support essential roles of stasis-induced, colon-like microbiota, TLR4- mediated colonic metaplasia, and genetic susceptibility in the development of pouchitis and possibly UC. However, these factors by themselves are not sufficient. Similarities between this model and human UC/pouchitis provide opportunities for gaining insights into the mechanistic basis of IBD and for identification of targets for novel preventative and therapeutic interventions.NIDDK DK42086 (DDRCC), UH3 DK083993, Leona and Harry Helmsley Trust (SHARE), R37 DK47722, T32 DK07074, F32 DK105728, Gastrointestinal Research Foundation of Chicago, Peter and Carol Goldman Family Research grant.2017-06-0

    Criticality Analysis of Activity Networks under Interval Uncertainty

    Get PDF
    Dedicated to the memory of Professor Stefan Chanas - The extended abstract version of this paper has appeared in Proceedings of 11th International Conference on Principles and Practice of Constraint Programming (CP2005) ("Interval Analysis in Scheduling", Fortin et al. 2005)International audienceThis paper reconsiders the Project Evaluation and Review Technique (PERT) scheduling problem when information about task duration is incomplete. We model uncertainty on task durations by intervals. With this problem formulation, our goal is to assert possible and necessary criticality of the different tasks and to compute their possible earliest starting dates, latest starting dates, and floats. This paper combines various results and provides a complete solution to the problem. We present the complexity results of all considered subproblems and efficient algorithms to solve them

    A communal catalogue reveals Earth's multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world's importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth's microbial diversity.Peer reviewe
    corecore