284 research outputs found
Variability of Millennial-Scale Trends in the Geomagnetic Axial Dipole
The historical trend in the axial dipole is sufficient to reverse the field in less than 2 kyr. Assessing the prospect of an imminent polarity reversal depends on the probability of sustaining the historical trend for long enough to produce a reversal. We use a stochastic model to predict the variability of trends for arbitrary time windows. Our predictions agree well with the trends computed from paleomagnetic models. Applying these predictions to the historical record shows that the current trend is likely due to natural variability. Furthermore, an extrapolation of the current trend for the next 1 to 2 kyr is highly unlikely. Instead, we compute the trend and time window needed to reverse the field with a specified probability. We find that the dipole could reverse in the next 20 kyr with a probability of 2%
Thermal and electrical conductivity of iron at Earth's core conditions
The Earth acts as a gigantic heat engine driven by decay of radiogenic
isotopes and slow cooling, which gives rise to plate tectonics, volcanoes, and
mountain building. Another key product is the geomagnetic field, generated in
the liquid iron core by a dynamo running on heat released by cooling and
freezing to grow the solid inner core, and on chemical convection due to light
elements expelled from the liquid on freezing. The power supplied to the
geodynamo, measured by the heat-flux across the core-mantle boundary (CMB),
places constraints on Earth's evolution. Estimates of CMB heat-flux depend on
properties of iron mixtures under the extreme pressure and temperature
conditions in the core, most critically on the thermal and electrical
conductivities. These quantities remain poorly known because of inherent
difficulties in experimentation and theory. Here we use density functional
theory to compute these conductivities in liquid iron mixtures at core
conditions from first principles- the first directly computed values that do
not rely on estimates based on extrapolations. The mixtures of Fe, O, S, and Si
are taken from earlier work and fit the seismologically-determined core density
and inner-core boundary density jump. We find both conductivities to be 2-3
times higher than estimates in current use. The changes are so large that core
thermal histories and power requirements must be reassessed. New estimates of
adiabatic heat-flux give 15-16 TW at the CMB, higher than present estimates of
CMB heat-flux based on mantle convection; the top of the core must be thermally
stratified and any convection in the upper core driven by chemical convection
against the adverse thermal buoyancy or lateral variations in CMB heat flow.
Power for the geodynamo is greatly restricted and future models of mantle
evolution must incorporate a high CMB heat-flux and explain recent formation of
the inner core.Comment: 11 pages including supplementary information, two figures. Scheduled
to appear in Nature, April 201
Recommended from our members
A two-dimensional model of the methane cycle in a sedimentary accretionary wedge
A two-dimensional model of sediment column geophysics and geochemistry has been adapted to the problem of an accretionary wedge formation, patterned after the margin of the Juan de Fuca plate as it subducts under the North American plate. Much of the model description is given in a companion paper about the application of the model to an idealized passive margin setting; here we build on that formulation to simulate the impact of the sediment deformation, as it approaches the subduction zone, on the methane cycle. The active margin configuration of the model shares sensitivities with the passive margin configuration, in that sensitivities to organic carbon deposition and respiration kinetics, and to vertical bubble transport and redissolution in the sediment, are stronger than the sensitivity to ocean temperature. The active margin simulation shows a complex sensitivity of hydrate inventory to plate subduction velocity, with results depending strongly on the geothermal heat flux. In low heat-flux conditions, the model produces a larger inventory of hydrate per meter of coastline in the passive margin than active margin configurations. However, the local hydrate concentrations, as pore volume saturation, are higher in the active setting than in the passive, as generally observed in the field
Modeling of nutation-precession: very long baseline interferometry results
Analysis of over 20 years of very long baseline
interferometry data (VLBI) yields estimates of the
coefficients of the nutation series with standard deviations
ranging from 5 microseconds of arc (μas) for the terms
with periods <400 days to 38 µas for the
longest-period terms. The largest deviations between the VLBI
estimates of the amplitudes of terms in the nutation series
and the theoretical values from the Mathews-Herring-Buffett
(MHB2000) nutation series are 56 ± 38 μas
(associated with two of the 18.6 year nutations). The
amplitudes of nutational terms with periods <400 days
deviate from the MHB2000 nutation series values at the level
standard deviation. The estimated correction to the IAU-1976
precession constant is -2.997 ± 0.008 mas
yr-1 when the coefficients of the MHB2000 nutation
series are held fixed and is consistent with that inferred
from the MHB2000 nutation theory. The secular change in the
obliquity of the ecliptic is estimated to be -0.252 ±
0.003 mas yr-1. When the coefficients of the
largest-amplitude terms in the nutation series are estimated,
the precession constant correction and obliquity rate are
estimated to be -2.960 ± 0.030 and -0.237 ± 0.012
mas yr-1. Significant variations in the freely
excited retrograde free core nutation mode are observed over
the 20 years. During this time the amplitude has decreased
from -300 ± 50 μas in the mid-1980s to nearly zero
by the year 2000. There is evidence that the amplitude of the
mode in now increasing again
Constraints on rigid zones and other distinct layers at the top of the outer core using CMB underside reflected PKKP waves
Recommended from our members
A two-dimensional model of the passive coastal margin deep sedimentary carbon and methane cycles
We present a new geologic-time and basin-spatial scale model of the continental margin methane cycle. The model, SpongeBOB, is used to simulate evolution of the carbon cycle in a passive sedimentary continental margin in response to changing oceanographic and geologic forcing over a time scale of 200 million years. The geochemistry of the sediment column is altered by the addition of vertical high-permeability channels intended to mimic the effects of heterogeneity in the real sediment column due to faults, and produces results consistent with measured pore-water tracers SO42− and 129I. Pore water dissolved inorganic carbon (DIC) concentrations are consistent with chemical weathering (CaCO3 formation from igneous rocks) at depth within the sediment column. The carbon isotopic composition of the DIC is consistent with a methane production efficiency from particulate organic carbon (POC) of 50%, which is somewhat lower than redox balance with the H / C of organic matter in the model. The hydrate inventory in the model is somewhat less sensitive to temperature than our previous results with a one-dimensional model, quite sensitive to reasonable changes in POC, and extremely sensitive to the ability of methane bubbles to rise within the sediment column, and how far gas-phase methane can get through the sediment column before it redissolves when it reaches undersaturated conditions. Hydrate formation is also sensitive to deep respiration of migrating petroleum. Other phenomena which we simulated had only a small impact on the hydrate inventory, including thermogenic methane production and production/decomposition of dissolved organic carbon
Performance benchmarks for a next generation numerical dynamo model
Numerical simulations of the geodynamo have successfully represented many observable characteristics of the geomagnetic field, yielding insight into the fundamental processes that generate magnetic fields in the Earth's core. Because of limited spatial resolution, however, the diffusivities in numerical dynamo models are much larger than those in the Earth's core, and consequently, questions remain about how realistic these models are. The typical strategy used to address this issue has been to continue to increase the resolution of these quasi-laminar models with increasing computational resources, thus pushing them toward more realistic parameter regimes. We assess which methods are most promising for the next generation of supercomputers, which will offer access to O(106) processor cores for large problems. Here we report performance and accuracy benchmarks from 15 dynamo codes that employ a range of numerical and parallelization methods. Computational performance is assessed on the basis of weak and strong scaling behavior up to 16,384 processor cores. Extrapolations of our weak-scaling results indicate that dynamo codes that employ two-dimensional or three-dimensional domain decompositions can perform efficiently on up to ∼106 processor cores, paving the way for more realistic simulations in the next model generation
Variation in sub-arc mantle oxygen fugacity during partial melting recorded in refractory peridotite xenoliths from the West Bismarck Arc
This work was funded bygrants (DP120104240 and DE120100513) to Richard J Arculus andOliver Nebel from the Australian Research Council
Stochastic Heterogeneity Mapping around a Mediterranean salt lens
We present the first application of Stochastic Heterogeneity Mapping based on the band-limited von Kármán function to a seismic reflection stack of a Mediterranean water eddy (meddy), a large salt lens of Mediterranean water. This process extracts two stochastic parameters directly from the reflectivity field of the seismic data: the Hurst number, which ranges from 0 to 1, and the correlation length (scale length). Lower Hurst numbers represent a richer range of high wavenumbers and correspond to a broader range of heterogeneity in reflection events. The Hurst number estimate for the top of the meddy (0.39) compares well with recent theoretical work, which required values between 0.25 and 0.5 to model internal wave surfaces in open ocean conditions based on simulating a Garrett-Munk spectrum (GM76) slope of −2. The scale lengths obtained do not fit as well to seismic reflection events as those used in other studies to model internal waves. We suggest two explanations for this discrepancy: (1) due to the fact that the stochastic parameters are derived from the reflectivity field rather than the impedance field the estimated scale lengths may be underestimated, as has been reported; and (2) because the meddy seismic image is a two-dimensional slice of a complex and dynamic three-dimensional object, the derived scale lengths are biased to the direction of flow. Nonetheless, varying stochastic parameters, which correspond to different spectral slopes in the Garrett-Munk spectrum (horizontal wavenumber spectrum), can provide an estimate of different internal wave scales from seismic data alone. We hence introduce Stochastic Heterogeneity Mapping as a novel tool in physical oceanography
Perspectives and Integration in SOLAS Science
Why a chapter on Perspectives and Integration in SOLAS Science in this book? SOLAS science by its nature deals with interactions that occur: across a wide spectrum of time and space scales, involve gases and particles, between the ocean and the atmosphere, across many disciplines including chemistry, biology, optics, physics, mathematics, computing, socio-economics and consequently interactions between many different scientists and across scientific generations. This chapter provides a guide through the remarkable diversity of cross-cutting approaches and tools in the gigantic puzzle of the SOLAS realm.
Here we overview the existing prime components of atmospheric and oceanic observing systems, with the acquisition of ocean–atmosphere observables either from in situ or from satellites, the rich hierarchy of models to test our knowledge of Earth System functioning, and the tremendous efforts accomplished over the last decade within the COST Action 735 and SOLAS Integration project frameworks to understand, as best we can, the current physical and biogeochemical state of the atmosphere and ocean commons. A few SOLAS integrative studies illustrate the full meaning of interactions, paving the way for even tighter connections between thematic fields. Ultimately, SOLAS research will also develop with an enhanced consideration of societal demand while preserving fundamental research coherency.
The exchange of energy, gases and particles across the air-sea interface is controlled by a variety of biological, chemical and physical processes that operate across broad spatial and temporal scales. These processes influence the composition, biogeochemical and chemical properties of both the oceanic and atmospheric boundary layers and ultimately shape the Earth system response to climate and environmental change, as detailed in the previous four chapters. In this cross-cutting chapter we present some of the SOLAS achievements over the last decade in terms of integration, upscaling observational information from process-oriented studies and expeditionary research with key tools such as remote sensing and modelling.
Here we do not pretend to encompass the entire legacy of SOLAS efforts but rather offer a selective view of some of the major integrative SOLAS studies that combined available pieces of the immense jigsaw puzzle. These include, for instance, COST efforts to build up global climatologies of SOLAS relevant parameters such as dimethyl sulphide, interconnection between volcanic ash and ecosystem response in the eastern subarctic North Pacific, optimal strategy to derive basin-scale CO2 uptake with good precision, or significant reduction of the uncertainties in sea-salt aerosol source functions. Predicting the future trajectory of Earth’s climate and habitability is the main task ahead. Some possible routes for the SOLAS scientific community to reach this overarching goal conclude the chapter
- …
