370 research outputs found

    Synthese und Einbau des Sporenphotoproduktes in DNA

    Get PDF

    Raf-1 kinase associates with Hepatitis C virus NS5A and regulates viral replication

    Get PDF
    AbstractHepatitis C virus (HCV) is a positive-strand RNA virus that frequently causes persistent infection associated with severe liver disease. HCV nonstructural protein 5A (NS5A) is essential for viral replication. Here, the kinase Raf-1 was identified as a novel cellular binding partner of NS5A, binding to the C-terminal domain of NS5A. Raf-1 colocalizes with NS5A in the HCV replication complex. The interaction of NS5A with Raf-1 results in increased Raf-1 phosphorylation at serine 338. Integrity of Raf-1 is crucial for HCV replication: inhibition of Raf-1 by the small-molecule inhibitor BAY43-9006 or downregulation of Raf-1 by siRNA attenuates viral replication

    Initial characterization of the human central proteome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>On the basis of large proteomics datasets measured from seven human cell lines we consider their intersection as an approximation of the human central proteome, which is the set of proteins ubiquitously expressed in all human cells. Composition and properties of the central proteome are investigated through bioinformatics analyses.</p> <p>Results</p> <p>We experimentally identify a central proteome comprising 1,124 proteins that are ubiquitously and abundantly expressed in human cells using state of the art mass spectrometry and protein identification bioinformatics. The main represented functions are proteostasis, primary metabolism and proliferation. We further characterize the central proteome considering gene structures, conservation, interaction networks, pathways, drug targets, and coordination of biological processes. Among other new findings, we show that the central proteome is encoded by exon-rich genes, indicating an increased regulatory flexibility through alternative splicing to adapt to multiple environments, and that the protein interaction network linking the central proteome is very efficient for synchronizing translation with other biological processes. Surprisingly, at least 10% of the central proteome has no or very limited functional annotation.</p> <p>Conclusions</p> <p>Our data and analysis provide a new and deeper description of the human central proteome compared to previous results thereby extending and complementing our knowledge of commonly expressed human proteins. All the data are made publicly available to help other researchers who, for instance, need to compare or link focused datasets to a common background.</p

    My contemporaries in 20^<th> century.

    Get PDF
    Original PCR screens for CD74-ROS1 translocation and BCR-ABL1 reversion (only results for 96 clones are shown for each rearrangement). (A) PCR screen on gDNA for clones harbouring CD74-ROS1 and ROS1-CD74 rearrangements. Asterisk indicates positive clone. (B) PCR screen on gDNA for clones harbouring repaired BCR and ABL1 genes. (PPTX 1609 kb

    Synthesis of a Fully Conjugated Phthalocyanine-Diketopyrrolopyrrole-Phthalocyanine Triad ow Band Gap Donor in Small Molecule Bulk Heterojunction Solar Cells

    Get PDF
    We describe the synthesis and photovoltaic properties of a fully conjugated phthalocyanine-diketopyrrolopyrrole-phthalocyanine triad (ZnPc-DPP-ZnPc) that presents strong visible absorption from 400 to 900 nm. The synthesis of the phthalocyanine with full conjugation to diketopyrrolopyrrole provides access to a new family of low band gap materials (<1.6 eV). Organic solar cells employing bulk heterojunction ZnPc-DPP-ZnPc:PC70BM films using MoO3 as anodic interfacial layer (IFL) show a power conversion efficiency of 1.04 %. The power conversion efficiency decreases considerably by using PEDOT:PSS as interfacial layer as a consequence of protonation of the ZnPc

    Self-assembly of chiral-at-end diketopyrrolopyrroles: symmetry dependent solution and film optical activity and photovoltaic performanace

    Get PDF
    Chiral thiophene-diketopyrrolopyrrole derivatives have been synthesised to investigate the potential of stereochemistry and symmetry as a means of modulating properties by influencing self-assembly of these purely organic materials. In particular, derivatives of diketopyrrolopyrrole were employed because of their proven interest as dyes, especially for organic solar cells. The natural product myrtenal was used as the source of stereochemistry, introduced through a Kröhnke reaction of a thiophenebearing pyridinium salt and diketopyrrolopyrroles were prepared through Suzuki coupling with this chiral moiety at one end only as well as at both ends. Absorption spectroscopy and electrochemistry confirmed the potential suitability of the compounds for photovoltaic devices. The nanostructures formed by the compounds have been probed with circular dichroism spectroscopy in solution and in films. It is shown that a chiral C2 symmetric molecule assembles in solution giving a strong circular dichroic signal while as a film this optical activity is nulled, whereas an asymmetric homologue is most optically active as a thin film. The X-ray crystal structure of the asymmetric compound shows a polar order of the molecules that might explain this observation. The lack of optical activity in solution is very likely a result of the high solubility of the compound. The results reaffirm the sensitivity of circular dichroism spectroscopy to inter-chromophore organisation, whereas absorption spectroscopy in the visible region reveals only slight changes to the bands. The differing order in the compounds also affects their performance in bulk heterojunction photovoltaic devices. Atomic force microscopy of the blended thin films with the fullerene derivative usually employed (PC61BM) showed that smooth and well mixed films were achieved, with the conditions required during spin coating depending greatly on the derivative, because of their differing solubility. The apparently better performance of the symmetrical compound (although with very low efficiency) is probably a result of the alignment of the molecules inferred by the circular dichroism experiments, whereas the asymmetric compound presumably adopts a twisted supramolecular organisation

    REG-γ associates with and modulates the abundance of nuclear activation-induced deaminase

    Get PDF
    REG-γ, a protein involved in protein degradation, binds to nuclear AID, and REG-γ–deficient B cells contain more AID and exhibit increased immunoglobulin class switching

    The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer

    Get PDF
    Colitis-associated cancer (CAC) is a major complication of inflammatory bowel diseases. We show that components of the inflammasome are protective during acute and recurring colitis and CAC in the dextran sulfate sodium (DSS) and azoxymethane + DSS models. Mice lacking the inflammasome adaptor protein PYCARD (ASC) and caspase-1 demonstrate increased disease outcome, morbidity, histopathology, and polyp formation. The increased tumor burden is correlated with attenuated levels of IL-1β and IL-18 at the tumor site. To decipher the nucleotide-binding domain, leucine-rich-repeat-containing (NLR) component that is involved in colitis and CAC, we assessed Nlrp3 and Nlrc4 deficient mice. Nlrp3−/− mice showed an increase in acute and recurring colitis and CAC, although the disease outcome was less severe in Nlrp3−/− mice than in Pycard−/− or Casp1−/− animals. No significant differences were observed in disease progression or outcome in Nlrc4−/− mice compared with similarly treated wild-type animals. Bone marrow reconstitution experiments show that Nlrp3 gene expression and function in hematopoietic cells, rather than intestinal epithelial cells or stromal cells, is responsible for protection against increased tumorigenesis. These data suggest that the inflammasome functions as an attenuator of colitis and CAC
    corecore