118 research outputs found

    Evaluating anemometer drift: A statistical approach to correct biases in wind speed measurement

    Get PDF
    Recent studies on observed wind variability have revealed a decline (termed “stilling”) of near-surface wind speed during the last 30–50 years over many mid-latitude terrestrial regions, particularly in the Northern Hemisphere. The well-known impact of cup anemometer drift (i.e., wear on the bearings) on the observed weakening of wind speed has been mentioned as a potential contributor to the declining trend. However, to date, no research has quantified its contribution to stilling based on measurements, which is most likely due to lack of quantification of the ageing effect. In this study, a 3-year field experiment (2014–2016) with 10-minute paired wind speed measurements from one new and one malfunctioned (i.e., old bearings) SEAC SV5 cup anemometer which has been used by the Spanish Meteorological Agency in automatic weather stations since mid-1980s, was developed for assessing for the first time the role of anemometer drift on wind speed measurement. The results showed a statistical significant impact of anemometer drift on wind speed measurements, with the old anemometer measuring lower wind speeds than the new one. Biases show a marked temporal pattern and clear dependency on wind speed, with both weak and strong winds causing significant biases. This pioneering quantification of biases has allowed us to define two regression models that correct up to 37% of the artificial bias in wind speed due to measurement with an old anemometer

    Impacts of anemometer changes, site relocations and processing methods on wind speed trends in China

    Get PDF
    In situ surface wind observation is a critical meteorological data source for various research fields. However, data quality is affected by factors such as surface friction changes, station relocations and anemometer updates. Previous methods to address discontinuities have been insufficient, and processing methods have not always adhered to World Meteorological Organization (WMO) World Climate Programme guidelines. We analyzed data discontinuity caused by anemometer changes and station relocations in China's daily in situ near-surface (∼ 10 m) wind speed observations and the impact of the processing methods on wind speed trends. By comparing the wind speed discontinuities with the recorded location changes, we identified 90 stations that showed abnormally increasing wind speeds due to relocation. After removing those stations, we followed a standard quality control method recommended by the World Meteorological Organization to improve the data reliability and applied Thiessen polygons to calculate the area-weighted average wind speed. The result shows that China's recent reversal of wind speed was reduced by 41 % after removing the problematic stations, with an increasing trend of 0.017 m s−1 yr−1 (R2 = 0.64, P &lt; 0.05), emphasizing the importance of robust quality control and homogenization protocols in wind trend assessments.</p

    Recent changes and drivers of the atmospheric evaporative demand in the Canary Islands

    Get PDF
    We analysed recent evolution and meteorological drivers of the atmospheric evaporative demand (AED) in the Canary Islands for the period 1961-2013. We employed long and high-quality time series of meteorological variables to analyse current AED changes in this region and found that AED has increased during the investigated period. Overall, the annual ETo, which was estimated by means of the FAO-56 Penman-Monteith equation, increased significantly by 18.2 mm decade-1 on average, with a stronger trend in summer (6.7 mm decade-1). In this study we analysed the contribution of (i) the aerodynamic (related to the water vapour that a parcel of air can store) and (ii) radiative (related to the available energy to evaporate a quantity of water) components to the decadal variability and trends of ETo. More than 90 % of the observed ETo variability at the seasonal and annual scales can be associated with the variability in the aerodynamic component. The variable that recorded more significant changes in the Canary Islands was relative humidity, and among the different meteorological factors used to calculate ETo, relative humidity was the main driver of the observed ETo trends. The observed trend could have negative consequences in a number of water-depending sectors if it continues in the future

    Assessment of vapor pressure deficit variability and trends in Spain and possible connections with soil moisture

    Get PDF
    The Vapor Pressure Deficit (VPD) is one of the most relevant surface meteorological variables; with important implications in ecology, hydrology, and atmosphere. By understanding the processes involved in the variability and trend of the VPD, it is possible to assess the possible impacts and implications related to both physical and human environments, like plant function, water use efficiency, net ecosystem production, atmospheric CO2 growth rate, etc. This study analysed recent temporal variability and trends in VPD in Spain between 1980 and 2020 using a recently developed high-quality dataset. Also, the connection between VPD and soil moisture and other key climate variables (e.g. air temperature, precipitation, and relative humidity) was assessed on different time scales varying from weekly to annual. The objective was to determine if changes in land-atmosphere feedbacks connected with soil moisture and evapotranspiration anomalies have been relevant to assess the interannual variability and trends in VPD. Results demonstrate that VPD exhibited a clear seasonality and dominant positive trends on both the seasonal (mainly spring and summer) and annual scales. Rather, trends were statistically non-significant (p > 0.05) during winter and autumn. Spatially, VPD positive trends were more pronounced in southern and eastern of Spain. Also, results suggest that recent trends of VPD shows low contribution of variables that drive land-atmosphere feedbacks (e.g. evapotranspiration, and soil moisture) in comparison to the role of global warming processes. Notably, the variability of VPD seems to be less coupled with soil moisture variability during summertime, while it is better interrelated during winter, indicating that VPD variability would be mostly related to climate variability mechanisms that control temperature and relative humidity than to land-atmosohere feedbacks. Overall, our findings highlight the importance of assessing driving forces and physical mechanisms that control VPD variability using high-quality climate datasets, especially, in semiarid and sub-humid regions of the world

    Thinning of the Monte Perdido Glacier in the Spanish Pyrenees since 1981

    Get PDF
    This paper analyzes the evolution of the Monte Perdido Glacier, the third largest glacier in the Pyrenees, from 1981 to the present. We assessed the evolution of the glacier''s surface area by analysis of aerial photographs from 1981, 1999, and 2006, and changes in ice volume by geodetic methods with digital elevation models (DEMs) generated from topographic maps (1981 and 1999), airborne lidar (2010) and terrestrial laser scanning (TLS, 2011, 2012, 2013, and 2014) data. We interpreted the changes in the glacier based on climate data from nearby meteorological stations. The results indicate that the degradation of this glacier accelerated after 1999. The rate of ice surface loss was almost three times greater during 1999-2006 than during earlier periods. Moreover, the rate of glacier thinning was 1.85 times faster during 1999-2010 (rate of surface elevation change = -8.98 ± 1.80 m, glacier-wide mass balance = -0.73 ± 0.14 m w.e. yr-1) than during 1981-1999 (rate of surface elevation change = -8.35 ± 2.12 m, glacier-wide mass balance = -0.42 ± 0.10 m w.e. yr-1). From 2011 to 2014, ice thinning continued at a slower rate (rate of surface elevation change = -1.93 ± 0.4 m yr-1, glacier-wide mass balance = -0.58 ± 0.36 m w.e. yr-1). This deceleration in ice thinning compared to the previous 17 years can be attributed, at least in part, to two consecutive anomalously wet winters and cool summers (2012-2013 and 2013-2014), counteracted to some degree by the intense thinning that occurred during the dry and warm 2011-2012 period. However, local climatic changes observed during the study period do not seem sufficient to explain the acceleration of ice thinning of this glacier, because precipitation and air temperature did not exhibit statistically significant trends during the study period. Rather, the accelerated degradation of this glacier in recent years can be explained by a strong disequilibrium between the glacier and the current climate, and likely by other factors affecting the energy balance (e.g., increased albedo in spring) and feedback mechanisms (e.g., heat emitted from recently exposed bedrock and debris covered areas)

    Mixed Methods Use in Project Management Research

    Get PDF
    Mixed methods research is increasingly being used in business and management disciplines, in spite of positivist traditions. The aim of the study is twofold: (1) to examine the types of mixed methods approaches being used, and (2) to determine the quality of the reporting of mixed methods studies published in the field of project management. A retrospective content analysis of articles from three ranked project management journals was undertaken for a sample period of 2004 to 2010. Our findings suggest the field of project management is in need of capacity building in relation to the good reporting of mixed methods studies

    Wind speed variability over the Canary Islands, 1948-2014: focusing on trend differences at the land-ocean interface and below-above the trade-wind inversion layer

    Get PDF
    This study simultaneously examines wind speed trends at the land?ocean interface, and below?above the trade-wind inversion layer in the Canary Islands and the surrounding Eastern North Atlantic Ocean: a key region for quantifying the variability of trade-winds and its response to large-scale atmospheric circulation changes. Two homogenized data sources are used: (1) observed wind speed from nine land-based stations (1981?2014), including one mountain weather station (Izaña) located above the trade-wind inversion layer; and (2) simulated wind speed from two atmospheric hindcasts over ocean (i.e., SeaWind I at 30 km for 1948?2014; and SeaWind II at 15 km for 1989?2014). The results revealed a widespread significant negative trend of trade-winds over ocean for 1948?2014, whereas no significant trends were detected for 1989?2014. For this recent period wind speed over land and ocean displayed the same multi-decadal variability and a distinct seasonal trend pattern with a strengthening (late spring and summer; significant in May and August) and weakening (winter?spring?autumn; significant in April and September) of trade-winds. Above the inversion layer at Izaña, we found a predominance of significant positive trends, indicating a decoupled variability and opposite wind speed trends when compared to those reported in boundary layer. The analysis of the Trade Wind Index (TWI), the North Atlantic Oscillation Index (NAOI) and the Eastern Atlantic Index (EAI) demonstrated significant correlations with the wind speed variability, revealing that the correlation patterns of the three indices showed a spatio-temporal complementarity in shaping wind speed trends across the Eastern North Atlantic.C. A. -M. has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 703733 (STILLING project). This research was also supported by the Research Projects: Swedish BECC, MERGE, VR (2014–5320), PCIN-2015-220, CGL2014-52135-C03-01 and Red de variabilidad y cambio climático RECLIM (CGL2014-517221-REDT). M.M is indebted to the Spanish Government for funding through the “Ramón y Cajal” program and supported by Grant PORTIO (BIA2015-70644-R

    Do CMIP models capture long-term observed annual precipitation trends?

    Get PDF
    This study provides a long-term (1891-2014) global assessment of precipitation trends using data from two station-based gridded datasets and climate model outputs evolved through the fifth and sixth phases of the Coupled Model Intercomparison Project (CMIP5 and CMIP6, respectively). Our analysis employs a variety of modeling groups that incorporate low- and high-top level members, with the aim of assessing the possible effects of including a well-resolved stratosphere on the model's ability to reproduce long-term observed annual precipitation trends. Results demonstrate that only a few regions show statistically significant differences in precipitation trends between observations and models. Nevertheless, this pattern is mostly caused by the strong interannual variability of precipitation in most of the world regions. Thus, statistically significant model-observation differences on trends (1891-2014) are found at the zonal mean scale. The different model groups clearly fail to reproduce the spatial patterns of annual precipitation trends and the regions where stronger increases or decreases are recorded. This study also stresses that there are no significant differences between low- and high-top models in capturing observed precipitation trends, indicating that having a well-resolved stratosphere has a low impact on the accuracy of precipitation projections

    Use of mixed methods designs in substance research: a methodological necessity in Nigeria

    Get PDF
    The utility of mixed methods (qualitative and quantitative) is becoming increasingly accepted in health sciences, but substance studies are yet to substantially benefit from such utilities. While there is a growing number of mixed methods alcohol articles concerning developed countries, developing nations are yet to embrace this method. In the Nigerian context, the importance of mixed methods research is yet to be acknowledged. This article therefore, draws on alcohol studies to argue that mixed methods designs will better equip scholars to understand, explore, describe and explain why alcohol consumption and its related problems are increasing in Nigeria. It argues that as motives for consuming alcohol in contemporary Nigeria are multiple, complex and evolving, mixed method approaches that provide multiple pathways for proffering solutions to problems should be embraced

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes
    corecore