563 research outputs found

    Neurologic Factors in Female Sexual Function and Dysfunction

    Get PDF
    Sexual dysfunction affects both men and women, involving organic disorders, psychological problems, or both. Overall, the state of our knowledge is less advanced regarding female sexual physiology in comparison with male sexual function. Female sexual dysfunction has received little clinical and basic research attention and remains a largely untapped field in medicine. The epidemiology of female sexual dysfunction is poorly understood because relatively few studies have been done in community settings. In the United States, female sexual dysfunction has been estimated to affect 40% of women in the general population. Among the elderly, however, it has been reported that up to 87% of women complain of sexual dissatisfaction. Several studies have shown that the prevalence of female sexual arousal disorders correlates significantly with increasing age. These studies have shown that sexual arousal and frequency of coitus in the female decreases with increasing age. The pathophysiology of female sexual dysfunction appears more complex than that of males, involving multidimensional hormonal, neurological, vascular, psychological, and interpersonal aspects. Organic female sexual disorders may include a wide variety of vascular, neural, or neurovascular factors that lead to problems with libido, lubrication, and orgasm. However, the precise etiology and mechanistic pathways of age-related female sexual arousal disorders are yet to be determined. In the past two decades, some advances have been made in exploring the basic hemodynamics and neuroregulation of female sexual function and dysfunction in both animal models and in human studies. In this review, we summarize neural regulation of sexual function and neurological causes of sexual dysfunction in women

    Can we define and characterize the aging lower urinary tract?—ICI-RS 2015

    Get PDF
    © 2017 Wiley Periodicals, Inc. The prevalence of lower urinary tract (LUT) symptoms increases with age but the etiology is unknown. This article aims to identify research directions that clarify the basis of this association. The initial question is whether biological age is the variable of interest or a time-dependent accumulation of factors that impact on LUT function at rates that differ between individuals. In particular, the accumulation of conditions or agents due to inflammatory states or tissue ischemia is important. Much of the above has been concerned with changes to bladder function and morphology. However, the outflow tract function is also affected, in particular changes to the function of external sphincter skeletal muscle and associated sacral motor nerve control. Nocturia is a cardinal symptom of LUT dysfunction and is more prevalent with aging. Urine production is determined by diurnal changes to the production of certain hormones as well as arterial blood pressure and such diurnal rhythms are blunted in subjects with nocturia, but the causal links remain to be elucidated. Changes to the central nervous control of LUT function with age are also increasingly recognized, whether in mid-brain/brainstem regions that directly affect LUT function or in higher centers that determine psycho-social and emotional factors impinging on the LUT. In particular, the linkage between increasing white matter hyperintensities and LUT dysfunction during aging is recognized but not understood. Overall, a more rational approach is being developed to link LUT dysfunction with factors that accumulate with age, however, the precise causal pathways remain to be characterized. Neurourol. Urodynam. 36:854–858, 2017. © 2017 Wiley Periodicals, Inc

    Metabolic Syndrome and Benign Prostatic Hyperplasia: Evidence of a Potential Relationship, Hypothesized Etiology, and Prevention

    Get PDF
    Benign prostatic hyperplasia (BPH) is highly prevalent in older men and causes substantial adverse effects on health. The pathogenesis of this disease is not totally clear. Recent reports have suggested a possible relationship between metabolic syndrome (MetS) and BPH. Single components of MetS (obesity, dyslipidemia, hypertension, and insulin resistance) as well as the syndrome itself may predispose patients to a higher risk of BPH and lower urinary tract symptoms (LUTS). This may stem from changes in insulin resistance, increased autonomic activity, impaired nitrergic innervation, increased Rho kinase activity, pro-inflammatory status, and changes in sex hormones that occur in association with MetS. However, the exact underlying mechanisms that regulate the potential relationship between MetS and BPH/LUTS still need to be clarified. Increased physical activity and dietary strategies may help in decreasing the incidence of MetS and its impact on BPH/LUTS. However, differences in the definitions used to address the examined predictors and endpoints preclude the possibility of arriving at definitive conclusions

    Quantitative elasticity measurement of urinary bladder wall using laser-induced surface acoustic waves

    Get PDF
    The maintenance of urinary bladder elasticity is essential to its functions, including the storage and voiding phases of the micturition cycle. The bladder stiffness can be changed by various pathophysiological conditions. Quantitative measurement of bladder elasticity is an essential step toward understanding various urinary bladder disease processes and improving patient care. As a nondestructive, and noncontact method, laser-induced surface acoustic waves (SAWs) can accurately characterize the elastic properties of different layers of organs such as the urinary bladder. This initial investigation evaluates the feasibility of a noncontact, all-optical method of generating and measuring the elasticity of the urinary bladder. Quantitative elasticity measurements of ex vivo porcine urinary bladder were made using the laser-induced SAW technique. A pulsed laser was used to excite SAWs that propagated on the bladder wall surface. A dedicated phase-sensitive optical coherence tomography (PhS-OCT) system remotely recorded the SAWs, from which the elasticity properties of different layers of the bladder were estimated. During the experiments, series of measurements were performed under five precisely controlled bladder volumes using water to estimate changes in the elasticity in relation to various urinary bladder contents. The results, validated by optical coherence elastography, show that the laser-induced SAW technique combined with PhS-OCT can be a feasible method of quantitative estimation of biomechanical properties

    Effects of 17β-oestradiol on rat detrusor smooth muscle contractility

    Get PDF
    The aim of this study was to investigate the effect of 17β-oestradiol (E2) on detrusor smooth muscle contractility and its possible neuroprotective role against ischaemic-like condition, which could arise during overactive bladder disease. The effect of E2 was investigated on rat detrusor muscle strips stimulated with carbachol, KCl and electrically, in the absence or presence of a selective oestrogen receptor antagonist (ICI 182,780) and, by using confocal Ca2+ imaging technique, measuring the amplitude (ΔF/F0) and the frequency of spontaneous whole cell Ca2+ flashes. Moreover, the effect of 1 and 2 h of anoxia–glucopenia and reperfusion (A-G/R), in the absence or presence of the hormone, was evaluated in rat detrusor strips perfused with Krebs solution which underwent electrical field stimulation to stimulate intrinsic nerves; the amplitude and the frequency of Ca2+ flashes were also measured. 17β-Oestradiol exhibited antispasmogenic activity assessed on detrusor strips depolarized with 60 mm KCl at two different Ca2+ concentrations. 17β-Oestradiol at the highest concentration tested (30 μm) significantly decreased detrusor contractions induced by all the stimuli applied. In addition, the amplitude and the frequency of spontaneous Ca2+ flashes were significantly decreased in the presence of E2 (10 and 30 μm) compared with control detrusor strips. In strips subjected to A-G/R, a significant increase in the amplitude of both spontaneous and evoked flashes was observed. 17β-Oestradiol was found to increase the recovery of detrusor strips subjected to A-G/R. The ability of E2 to suppress contraction in control conditions may explain its ability to aid recovery following A-G/R

    Role of Neural NO Synthase (nNOS) Uncoupling in the Dysfunctional Nitrergic Vasorelaxation of Penile Arteries from Insulin-Resistant Obese Zucker Rats

    Get PDF
    Objective: Erectile dysfunction (ED) is considered as an early sign of vascular disease due to its high prevalence in patients with cardiovascular risk factors. Endothelial and neural dysfunction involving nitric oxide (NO) are usually implicated in the pathophysiology of the diabetic ED, but the underlying mechanisms are unclear. The present study assessed the role of oxidative stress in the dysfunctional neural vasodilator responses of penile arteries in the obese Zucker rat (OZR), an experimental model of metabolic syndrome/prediabetes. Methods and Results: Electrical field stimulation (EFS) under non-adrenergic non-cholinergic (NANC) conditions evoked relaxations that were significantly reduced in penile arteries of OZR compared with those of lean Zucker rats (LZR). Blockade of NO synthase (NOS) inhibited neural relaxations in both LZR and OZR, while saturating concentrations of the NOS substrate L-arginine reversed the inhibition and restored relaxations in OZR to levels in arteries from LZR. nNOS expression was unchanged in arteries from OZR compared to LZR and nNOS selective inhibition decreased the EFS relaxations in LZR but not in OZR, while endothelium removal did not alter these responses in either strain. Superoxide anion production and nitro-tyrosine immunostaining were elevated in the erectile tissue from OZR. Treatment with the NADPH oxidase inhibitor apocynin or acute incubation with the NOS cofactor tetrahydrobiopterin (BH4) restored neural relaxations in OZR to levels in control arteries, while inhibition of the enzyme of BH4 synthesis GTP-cyclohydrolase (GCH) reduced neural relaxations i
    corecore