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Abstract 

 

The prevalence of lower urinary tract (LUT) symptoms increases with age but the aetiology is 

unknown.  This article aims to identify research directions that clarify the basis of this association.  

The initial question is whether biological age is the variable of interest or a time-dependent 

accumulation of factors that impact on LUT function at rates that differ between individuals.  In 

particular, the accumulation of conditions or agents due to inflammatory states or tissue ischaemia are 

important.  Much of the above has been concerned with changes to bladder function and morphology.  

However, the outflow tract function is also affected, in particular changes to the function of external 

sphincter skeletal muscle and associated sacral motor nerve control.  Nocturia is a cardinal symptom 

of LUT dysfunction and is more prevalent with ageing.   Urine production is determined by diurnal 

changes to the production of certain hormones as well as arterial blood pressure and such diurnal 

rhythms are blunted in subjects with nocturia, but the causal links remain to be elucidated.  Changes to 

the central nervous control of LUT function with age are also increasingly recognized, whether in mid-

brain/brainstem regions that directly affect LUT function or in higher centres that determine psycho-

social and emotional factors impinging on the LUT.  In particular, the linkage between increasing white 

matter hyperintensities and LUT dysfunction during ageing is recognized but not understood.  Overall, 

a more rational approach is being developed to link LUT dysfunction with factors that accumulate with 

age, however, the precise causal pathways remain to be characterized. 
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An increased prevalence of LUT disorders is associated with age, but questions remain unresolved that 

surround this simple statement.  For example, does LUT dysfunction develop as a natural ageing 

process or is it dependent on other factors that have a cumulative effect on the LUT until a threshold 

breakdown occurs?  Furthermore, what regions of the LUT are most affected that eventually lead to 

dysfunction: the contracting detrusor, the outflow tract, sensations during bladder filling, or central 

and peripheral control of LUT function?  Nearly all these questions remain unanswered and it is the 

purpose of this article to introduce specific areas of interest and highlight research questions that may 

shed light on why LUT dysfunction occurs more as the arrow of time progresses.  

Ageing as an entity.  Although the passage of time is associated with increased LUT dysfunction, no 

causal relationship has been demonstrated and is equally possible to assert that as a person lives 

longer there is a greater likelihood they will acquire conditions that may impact on LUT function. Thus, 

the process of age-related changes based on chronological age alone is unlikely to develop our 

understanding of age-associated LUT dysfunction.  

Longitudinal studies of sufficient magnitude and length are very difficult to carry out; therefore to 

truly ascribe physiological changes to the passage of time we need to agree upon a description of 

physiological or perhaps pathophysiological age to conduct robust cross-sectional studies. It is likely 

that a mere absence of symptoms or overt major systems disease will be insufficient. 

Biological systems have a significant reserve to ensure adequate function over a lifespan despite 

external stresses – a property called compensation.  Failure (decompensation) occurs if the biological 

reserve collapses due to excessive stresses or if the compensatory alterations induce their own 

dysfunction.  This is captured in a redundancy model of ageing whereby systems are described as 

“blocks” which do not age per se, but fail for various reasons and an ageing effect occurs as redundancy 

is exhausted [1].  The rate of failure of “blocks” within a system varies and also depends on the number 

of remaining “blocks”, some of which may be critical for survival.  This latter dependency may indicate 

an intrinsic phenomenon affecting the whole organism leading to failure of the weakest link or critical 

system [2]. 
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Two examples of cumulative changes that can exert long-term impact on the urinary tract are 

inflammaging and gradual accumulating ischaemia in the LUT itself or its nervous control.  

Inflammaging is characterised by upregulation of the inflammatory response that occurs with 

advancing age [3] due to cumulative lifetime exposures to antigenic loads from clinical and subclinical 

infections as well as non-infective antigens. The consequent inflammatory response elicits the release 

of additional cytokines resulting in a pro-inflammatory state. Irreversible cellular and molecular 

damage, that is not clinically evident, therefore slowly accumulates over decades.  Equally, perfusion 

impairment as a result of conditions such as atherosclerosis affects both voiding and storage LUT 

function independent of age [4], but the critical sites of ischaemic damage to the LUT and its regulators 

have not yet been identified. 

In addition to the accumulation of pathological impacts, the elderly also tend to be exposed to more 

general pressures that can impact on LUT function.   Two examples again illustrate the range of these 

confounding factors.  The elderly tend to take an increasing number of different medications for other 

conditions.  However, it is difficult to assess how this spectrum of polypharmacy affects LUT function 

but must always be considered as a complicating factor.  Secondly, fluid intake in the elderly can be 

very different from the general population, especially those in care homes where intake can be very 

low.  Prolonged dehydration leading to renal failure can diminish the ability of the kidneys to 

appropriately concentrate urine and in some generate polyuria, whilst in others oliguria will impact on 

normal bladder wall filling sensations. 

Changes to structure and function of the bladder with ageing: human and animal studies.  Several 

variables have been formulated for use in human studies that measure detrusor contractile strength, 

when voiding, including the bladder contractility index (BCI) and the Watts Factor [5].  Cohort studies 

show a small decline of BCI with age (6) and calculation of the maximum detrusor-Watts Factor during 

voiding shows age-dependent reductions of about 15% and 35%, in men and women respectively, 

between 50 to 80 years of age (P Rosier, ICS-2015, abstract 267).  It remains to be ascertained how 
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these clinical indices are interpreted in terms of physiological function associated with LUT contractile 

function. 

To gain insight into particular pathological changes associated with LUT dysfunction, ‘aged’ animals 

are used in comparison to younger ones. However, most laboratory animals have much shorter life-

spans than humans and changes occurring in animal models, throughout their lifespan, may not mirror 

those in humans.  One determination of an ageing animal is the appearance of biomarkers associated 

with senescence, as may occur in humans over 65 years, and using this criterion, rats and mice older 

than 18-24 months and guinea-pigs older than 30 months would be appropriate [7]. However, many 

reports from ‘aged’ models use younger animals and so some of the resulting data must be interpreted 

with caution.  

With respect to human tissue, increasing age and bladder outflow obstruction (BOO) is associated with 

an increase of the collagen:muscle ratio in tissue biopsies from men [8] and mirrored in a decline of in 

vitro contractility [9].  However, the greater fibrosis with BOO is associated with greater detrusor 

voiding pressure indicating bladder wall hypertrophy [10].  These changes are reflected in some, but 

not all, animal equivalents [7,11].  In addition, the bladder wall contains various cell types such as 

epithelial cells, nervous and vascular supplies, connective tissue, interstitial cells and immune system 

cells. Interaction between these different cell types is complex and regulation of bladder function 

depends upon integration of their individual activities. Investigation of the interactions between these 

cells types, as a function of age, should provide important insights into LUT dysfunction. The passage 

of time has other, profound effects, such as denervation of afferent and efferent nerves to bladder 

tissues [7,11].  This may be countermanded by increased release of neuroactivators from the mucosa 

during external stresses [12,13].  Thus far, it has not been possible to use animal models to determine 

if changes occurring to LUT function in ageing humans are part of a senescence process or the 

accumulation of pathological burdens that gradually degrade function. 

Impact of ischemia on the aging process of the bladder.  Ageing is associated with impaired blood vessel 

function, characterised by endothelial dysfunction mediated largely by NO insufficiency through 
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oxidative stress and chronic low-grade inflammation [14].  Arterial endothelial dysfunction is the 

primary antecedent for atherosclerotic diseases, which can result in bladder ischaemia and the 

development of LUTS [15].  Elderly patients with LUTS do have a significantly greater bladder blood 

flow resistance index, measured with transrectal ultrasound colour Doppler, in comparison to younger 

(40 yrs) people with low symptom scores [16].  Pelvic arterial insufficiency can result in the 

development of detrusor overactivity and eventually detrusor underactivity [17].  One mechanism is 

potentially through bladder ischaemia and bladder wall hypoxia [18], with resultant oxidative stress, 

increased muscarinic receptor activity, ultrastructural damage and neurodegeneration [19].    

It would be desirable to treat not only LUT symptoms (LUTS) induced by chronic ischemia, but also 

the progression of morphological changes that occur in detrusor muscle and other structures within 

the bladder wall.  Several drug types have been proposed as having potential to influence some of 

these changes.  The α1-adrenoceptor blocker silodosin, the β3-AR agonist mirabegron, and the free 

radical scavenger melatonin all had a protective effect on both urodynamic parameters and in vitro 

functional and morphological bladder changes even though they do not prevent development of 

neointimal hyperplasia and bladder ischaemia in animal models: the PDE5 inhibitor tadalafil did not 

demonstrate any positive effect on urodynamic parameters [20]. This variety of effective agents 

suggests a multifactorial pathogenesis of bladder dysfunction induced by chronic ischaemia.  As 

several of the agents are used clinically to relieve LUTS these results have translational value, and 

should be used to design clinical studies to demonstrate whether progression of ischemia-related 

functional and morphological bladder changes can be limited. 

The bladder outflow tract with ageing. The external urethral sphincter (EUS) contains a crucial ring of 

striated muscle, the rhabdosphincter. With increasing bladder filling, tonic EUS contractions 

progressively increase, but at the initiation of voluntary voiding both the bladder neck circumferential 

muscle fibers and the EUS relax as the bladder dome contracts.   Somatic motor neurons from Onuf’s 

nucleus in the sacral spinal cord innervate, via the pudendal nerve, and excite muscle fibres of the EUS 

via acetylcholine acting on nicotinic receptors.  Glutamate is the main excitatory neurotransmitter on 
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these motor neurons, which in turn is augmented by serotonin and noradrenaline, demonstrating a 

complex control of rhabdosphincter function by Onuf’s nucleus [21,22].  Stress urinary incontinence 

(SUI) is prevalent in the older population and importantly is due to failure of the EUS mechanism.  

There remains little information about the pathological changes that accompany development of SUI 

but may include: a loss of muscle fibre numbers; reduced contractile performance; denervation of 

motor nerves; failure of neurotransmission at the motor end plate; or changes to the spinal control 

system. Pelvic nerve neuropathy might play a role in women with SUI [23] and animal models of 

pudendal nerve transection showed atrophy of the EUS striated muscle [24].  Intraurethral 

sonography also shows a decrease of sphincter muscle thickness as a function of patient age in women 

with SUI [25].  However, a great deal remains to be determined about the muscle mechanics of EUS 

striated muscle, how contractile function is regulated via Onuf’s nucleus, and what changes of function 

occur that are associated with SUI and its relation to increasing age of the patient. 

Nocturia, an age-determined phenomenon?  The prevalence of nocturia, awakening at least once a night 

to void and followed by sleep, increases with age and two or more episodes is associated with 

increased risk of falls and fractures, cardiovascular events and poor sleep quality [26].  A frequency-

volume chart is useful to determine whether nocturia is due to a reduced bladder capacity, nocturnal 

polyuria, 24-hour polyuria or a combination [27].  In addition, patients with nocturnal polyuria can be 

classified as those with a raised free water or sodium clearance at night.  Sleep, bladder capacity and 

urine production are subject to circadian rhythms that diminish with increasing age [28, 29] and are 

driven by cyclical release of hormones such as vasopressin (ADH), angiotensin, aldosterone and 

melatonin [29,30].  These hormones not only regulate renal sodium and water handling but can also 

directly or indirectly influence arterial blood pressure (ABP).  The association between ABP and renal 

function, especially in relation to nocturnal urine volumes [31], has several consequences.  During 

sleep ABP falls by 10-20%, in part due to physical inactivity (of interest the extent of this diurnal 

variation may be an independent predictor of cardiovascular dysfunction).   The diurnal variation is 

also less in subjects who exhibit nocturia [32].  Indeed, the association between arterial blood 

pressure and nocturnal urine volumes may explain why subjects with essential hypertension 
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experience a greater incidence of nocturia and increased night-time sodium excretion, compared to 

the normal population [29].  However, the precise causal linkages between cardiovascular function 

and nocturia remain to be evaluated. 

Contribution from the brain and other external factors to dysfunction of bladder structure, function and 

voiding.   Increasing evidence suggests that, with ageing, central nervous control of the LUT is affected. 

Normal voiding engages a spino-midbrain-spinal neural loop.  Afferent information on bladder status 

is relayed to the midbrain periaqueductal grey matter (PAG) and thereafter to the pontine micturition 

centre (PMC), the source of spinally-projecting neurons that control motor outflows to the detrusor 

and sphincter muscles.  During bladder filling, tonic inhibition of the voiding circuit by GABA is 

imposed at a midbrain level and results in a low level of PAG activation [33].  However, once the 

voiding threshold is reached, the GABA tone is lifted with a stepped increase of PAG activation and 

recruitment of the PMC as the circuitry switches to voiding mode [34].  In humans and other socialised 

species voiding occurs only when the individual judges it to be appropriate, even when the bladder is 

full.  Forebrain structures, probably the prefrontal cortex, must exert control over the basic pontine 

and sacral voiding circuits [35].  fMRI imaging during bladder filling shows that at low volumes, when 

there is little conscious bladder sensation, midbrain and parahippocampal regions are activated, but 

not cortical areas.  However, with a full bladder strong sensations ensue and the insula (thought to 

encode visceral sensation) and dorsal anterior cingulate/supplementary motor complex are activated, 

with some studies also showing de-activation in the prefrontal cortex [36,37].  In ageing individuals, 

even those with normal LUT control, decreased responses to bladder filling are observed in the right 

insula, consistent with its role in perception of visceral sensation.  Failure to detect sensation until the 

bladder is extremely full may contribute to the development of urgency.  In elderly urgency 

incontinent individuals, activation in the anterior cingulate gyrus is stronger than normal which may 

represent a sign of urgency  [34,38].  

The presence in these brain regions of white-matter hyperintensities (WMH), which are  structural 

abnormalities which appear with ageing and may be linked to small vessel disease, are associated with 
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LUT disorders. WMH in the right inferior frontal region and cingulate gyrus are associated with 

urinary incontinence [39] and with detrusor overactivity when present in the right anterior thalamic 

radiation, which connects prefrontal regions with the thalamus and pontine voiding circuit.   

Bladder compliance increases with age in animal models [40], an effect which may contribute to the 

increased volume at which a first desire to void occurs in humans as they age [41]. The effect on 

compliance is more evident in vivo than with ex vivo bladders and suggests that the central nervous 

system mechanism regulating compliance [42], requires further evaluation.    

Psychosocial factors may also influence LUT function. Young adult mice when socially deprived 

developed non-voiding bladder contractions, similar to detrusor overactivity, and a decreased 

micturition interval in the short term (two weeks), but longer exposures increased both bladder 

capacity and micturition interval with resultant remodeling of the bladder wall [43].  One potential 

contributing factor may be altered release of corticotropin releasing factor (CRF), with more CRF 

immune-reactive neurons in the PMC after social stress. Ageing is associated with behavioural 

changes, including elevated anxiety or depression, narrowed social engagement, and cognitive 

impairment. The extent to which these factors contribute to age related LUT dysfunction is worthy of 

further investigation. 

 

The use of mathematical models to address interpration of changes to LUT function with ageing. The 

Valentini–Besson–Nelson (VBN) model [44] is a quantitative description of mechanistic phenomena 

that govern micturition including: detrusor contractility and viscoelasticity, urethral elasticity and 

sphincteric compression, hydrodynamics of turbulent incompressible fluids and abdominal straining. 

Each phenomenon can be separately studied: however when combined, as during voiding, they 

constitute an intricate set of variables that is best analysed with computer models such as VBN® 

software. Inputs include filling volume and catheter size (and gender); outputs are computed voiding 

curves, flow rate and detrusor pressure vs time. The status of the urethral sphincter is described by an 
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“equivalent compression” VBN parameter U (units of pressure) and interpreted as a real compression 

or change to its effective cross-section.  Detrusor force is characterized by the dimensionless VBN 

parameter k. 

An example of the use of the VBN model with urodynamic data is how detrusor contraction and 

sphincter function change with age in two populations of non-neurogenic women (20-90 years), with 

or without obstruction, and referred for evaluation of LUT disorders.  Modelling showed that in both 

groups k was constant with respect to age until an average menopausal time (50 years), and then 

decreased abruptly with further ageing (by 23% from 50 - 90 years).  With obstructed patients, k was 

greater and there was a significant correlation between the values of k and U in both groups at all ages.  

These observations are consistent with a deterioration of detrusor force and loss of striated sphincter 

function especially once the menopause has been achieved and is consistent with other studies 

[45,46].  

 

Research questions 

A large number of factors currently associated with ageing may also be linked to disordered LUT 

function.  However, in most cases a causal relationship has not been established and a number of key 

topics require investigation: 

1 Can we define better our concept of ‘ageing’, is it related merely to the passage of time or the 

expression of particular biomarkers?  Included in this is a need to collect better epidemiological data 

with regard to LUT dysfunction over a wide age range. 

2 Define the role of chronic bladder ischemia in the pathophysiology of human ageing-related LUT 

dysfunction. 

3 Develop better animal models of LUT functional changes related to ageing, rather than the middle-

aged normal animals used by many groups today?  How do we extrapolate findings from these models 

to the human condition with respect to LUT dysfunction? 

4 Characterise the physiological properties of rhabdosphincter skeletal muscle (human and animal 

tissues) and how these alter in well-defined pathological conditions, e.g. sarcopenia. 
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5 Understand better the sacral control of pudendal nerve outputs related to effects of ageing and/or 

‘chronic load’ to the external urethral sphincter and or the pelvic muscles. 

6 Describe the age-dependence of circadian rhythms in hormones regulating renal sodium/water 

balance and blood pressure in the evaluation of patients with LUT dysfunction. 

7 Describe the effects of changes in bladder sensation, detrusor overactivity and nocturnal polyuria 

on LUT disorders.  Determine the effect of nocturia and nocturnal polyuria in patients treated for sleep 

disorders. 

8 Increase our understanding of how ageing affects specific areas of the brain that control the 

storage/voiding cycle. 

9 Explain the association of white matter hyperintensities, associated with older age and cognitive 

decline, with LUT dysfunction. 
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