205 research outputs found

    Risk factors for bacterial catheter colonization in regional anaesthesia

    Get PDF
    BACKGROUND: Although several potential risk factors have been discussed, risk factors associated with bacterial colonization or even infection of catheters used for regional anaesthesia are not very well investigated. METHODS: In this prospective observational trial, 198 catheters at several anatomical sites where placed using a standardized technique. The site of insertion was then monitored daily for signs of infection (secretion at the insertion site, redness, swelling, or local pain). The catheters were removed when clinically indicated (no or moderate postoperative pain) or when signs of potential infection occurred. After sterile removal they were prospectively analyzed for colonization, defined as > 15 colony forming units. RESULTS: 33 (16.7%) of all catheters were colonized, and 18 (9.1%) of these with additional signs of local inflammation. Two of these patients required antibiotic treatment due to superficial infections. Stepwise logistic regression analysis was used to identify factors associated with catheter colonization. Out of 26 potential factors, three came out as statistically significant. Catheter placement in the groin (odds-ratio and 95%-confidence interval: 3.4; 1.5–7.8), and repeated changing of the catheter dressing (odds-ratio: 2.1; 1.4–3.3 per removal) increased the risk for colonization, whereas systemic antibiotics administered postoperatively decreased it (odds ratio: 0.41; 0.12–1.0). CONCLUSION: Colonization of peripheral and epidural nerve catheter can only in part be predicted at the time of catheter insertion since two out of three relevant variables that significantly influence the risk can only be recorded postoperatively. Catheter localisation in the groin, removal of the dressing and omission of postoperative antibiotics were associated with, but were not necessarily causal for bacterial colonization. These factors might help to identify patients who are at increased risk for catheter colonization

    Agricultural wastes from wheat, barley, flax and grape for the efficient removal of Cd from contaminated water

    Get PDF
    Agricultural production results in wastes that can be re-used to improve the quality of the environment. This work has investigated for the first time the use of abundant, un-modified agricultural wastes and by-products (AWBs) from grape, wheat, barley and flax production, to reduce the concentration of Cd, a highly toxic and mobile heavy metal, in contaminated water. At concentrations of 1.1 mg Cd per L, flax and grape waste were found superior in removing Cd compared with a granular activated carbon used in water treatment, which is both more expensive and entails greater CO2 emissions in its production. At a pH representative of mine effluents, where Cd presents its greatest mobility and risk as a pollutant, grape and flax waste showed capacity for effective bulk water treatment due to rapid removal kinetics and moderate adsorption properties: reaching equilibrium within 183 and 8 min – adsorption capacities were determined as 3.99 and 3.36 mg Cd per g, respectively. The capacity to clean contaminated effluents was not correlated with the surface area of the biosorbents. Surface chemistry analysis indicated that Cd removal is associated with exchange with Ca, and chemisorption involving CdCO3, CdS and CdO groups. This work indicates that some AWBs can be directly (i.e. without pre-treatment or modification) used in bulk to remediate effluents contaminated with heavy metals, without requiring further cost or energy input, making them potentially suitable for low-cost treatment of persistent (e.g. via mine drainage) or acute (e.g. spillages) discharges in rural and other areas

    Bioactive Molecules Released in Food by Lactic Acid Bacteria: Encrypted Peptides and Biogenic Amines

    Get PDF
    Lactic acid bacteria (LAB) can produce a huge amount of bioactive compounds. Since their elective habitat is food, especially dairy but also vegetal food, it is frequent to find bioactive molecules in fermented products. Sometimes these compounds can have adverse effects on human health such as biogenic amines (tyramine and histamine), causing allergies, hypertensive crises, and headache. However, some LAB products also display benefits for the consumers. In the present review article, the main nitrogen compounds produced by LAB are considered. Besides biogenic amines derived from the amino acids tyrosine, histidine, phenylalanine, lysine, ornithine, and glutamate by decarboxylation, interesting peptides can be decrypted by the proteolytic activity of LAB. LAB proteolytic system is very efficient in releasing encrypted molecules from several proteins present in different food matrices. Alpha and beta-caseins, albumin and globulin from milk and dairy products, rubisco from spinach, beta-conglycinin from soy and gluten from cereals constitute a good source of important bioactive compounds. These encrypted peptides are able to control nutrition (mineral absorption and oxidative stress protection), metabolism (blood glucose and cholesterol lowering) cardiovascular function (antithrombotic and hypotensive action), infection (microbial inhibition and immunomodulation) and gut-brain axis (opioids and anti-opioids controlling mood and food intake). Very recent results underline the role of food-encrypted peptides in protein folding (chaperone-like molecules) as well as in cell cycle and apoptosis control, suggesting new and positive aspects of fermented food, still unexplored. In this context, the detailed (transcriptomic, proteomic, and metabolomic) characterization of LAB of food interest (as starters, biocontrol agents, nutraceuticals, and probiotics) can supply a solid evidence-based science to support beneficial effects and it is a promising approach as well to obtain functional food. The detailed knowledge of the modulation of human physiology, exploiting the health-promoting properties of fermented food, is an open field of investigation that will constitute the next challenge

    Therapeutic strategies to slow chronic kidney disease progression

    Get PDF
    Childhood chronic kidney disease commonly progresses toward end-stage renal failure, largely independent of the underlying disorder, once a critical impairment of renal function has occurred. Hypertension and proteinuria are the most important independent risk factors for renal disease progression. Therefore, current therapeutic strategies to prevent progression aim at controlling blood pressure and reducing urinary protein excretion. Renin-angiotensin-system (RAS) antagonists preserve kidney function not only by lowering blood pressure but also by their antiproteinuric, antifibrotic, and anti-inflammatory properties. Intensified blood pressure control, probably aiming for a target blood pressure below the 75th percentile, may exert additional renoprotective effects. Other factors contributing in a multifactorial manner to renal disease progression include dyslipidemia, anemia, and disorders of mineral metabolism. Measures to preserve renal function should therefore also comprise the maintenance of hemoglobin, serum lipid, and calcium-phosphorus ion product levels in the normal range
    corecore