217 research outputs found
Carbon and nitrogen assimilating enzymes of maize hybrids representing seven eras of breeding.
Suplemento. Edição dos resumos do 43º Congresso Nacional de Genética
Five-year publication rate of clinical presentations at the open and closed American shoulder and elbow surgeons annual meeting from 2005–2010
© 2016, The Author(s). Background: The purpose of this study was to evaluate the five-year publication rate of papers presented at both the open and closed American Shoulder and Elbow Surgeons’ (ASES) annual meetings from 2005 to 2010. Methods: Online abstracts of the presentations at the open and closed ASES annual meetings were independently screened for clinical studies and graded for quality using level of evidence. The databases PubMed (MEDLINE), Ovid (MEDLINE), and EMBASE were comprehensively searched for full-text publications corresponding to these presentations and any paper published within five years of the presentation date was counted. Results: Overall, 131/266 papers corresponding to the meeting presentations were identified for a five-year publication rate of 49.2 %. Sixty two (48 %) of the papers were published in The Journal of Shoulder and Elbow Surgeons, 23 (18 %) were published in The American Journal of Sports Medicine, and 20 (16 %) were published in The Journal of Bone and Joint Surgery. The mean patient sample size included in presentations with a subsequent full-text publication was higher (154; standard error =27) than the presentations not published (93; standard error = 13) (p = 0.039). There was no correlation (p = 0.248) between the publication rate and the level of evidence of the presentations. Conclusions: The publication rate of presentations at ASES meetings from 2005 to 2010 is similar to that reported from other orthopaedic meetings. Studies with large sample sizes should continue to be encouraged, and high quality presentations must consistently be followed up with full-text manuscript preparation in order to maximize the future clinical impact
Mixed reality visualization in shoulder arthroplasty: is it better than traditional preoperative planning software?
Background Preoperative traditional software planning (TSP) is a method used to assist surgeons with implant selection and glenoid guide-pin insertion in shoulder arthroplasty. Mixed reality (MR) is a new technology that uses digital holograms of the preoperative plan and guide-pin trajectory projected into the operative field. The purpose of this study was to compare TSP to MR in a simulated surgical environment involving insertion of guide-pins into models of severely deformed glenoids. Methods Eight surgeons inserted guide-pins into eight randomized three-dimensional-printed severely eroded glenoid models in a simulated surgical environment using either TSP or MR. In total, 128 glenoid models were used and statistically compared. The outcomes compared between techniques included procedural time, difference in guide-pin start point, difference in version and inclination, and surgeon confidence via a confidence rating scale. Results When comparing traditional preoperative software planning to MR visualization as techniques to assist surgeons in glenoid guide pin insertion, there were no statistically significant differences in terms of mean procedure time (P=0.634), glenoid start-point (TSP=2.2±0.2 mm, MR=2.1±0.1 mm; P=0.760), guide-pin orientation (P=0.586), or confidence rating score (P=0.850). Conclusions The results demonstrate that there were no significant differences between traditional preoperative software planning and MR visualization for guide-pin placement into models of eroded glenoids. A perceived benefit of MR is the real-time intraoperative visibility of the surgical plan and the patient’s anatomy; however, this did not translate into decreased procedural time or improved guide-pin position. Level of evidence Basic science study, biomechanics
Rioting and the politics of crisis
This paper draws on selected explanatory accounts of rioting that occurred in England in 2011 for the purpose of illustrating the ways in which scholarly critiques frame quite different senses of what kind of 'crisis' the riots represented. On one side the riots are understood within a 'race and policing' frame placing in a line of continuity with events across time and space and in an on-going crisis of racial subjugation. In direct contrast, another side treats the riots as a crisis of post-politics, in which nihilism has replaced purposive political action. While different types of politics are centred in both approaches, they differ remarkably in relation to racism, with the latter treating race as epiphenomenal. These frames are instances of how critical scholarly understandings draw on events, and it is argued they miss potentially far reaching senses of 'crisis' that can be drawn out of some aspects of rioting
Automatic Detection of User Abilities through the SmartAbility Framework
This paper presents a proposed smartphone application for the unique SmartAbility Framework that
supports interaction with technology for people with reduced physical ability, through focusing on
the actions that they can perform independently. The Framework is a culmination of knowledge
obtained through previously conducted technology feasibility trials and controlled usability
evaluations involving the user community. The Framework is an example of ability-based design that
focuses on the abilities of users instead of their disabilities. The paper includes a summary of
Versions 1 and 2 of the Framework, including the results of a two-phased validation approach,
conducted at the UK Mobility Roadshow and via a focus group of domain experts. A holistic model
developed by adapting the House of Quality (HoQ) matrix of the Quality Function Deployment (QFD)
approach is also described. A systematic literature review of sensor technologies built into smart
devices establishes the capabilities of sensors in the Android and iOS operating systems. The review
defines a set of inclusion and exclusion criteria, as well as search terms used to elicit literature from
online repositories. The key contribution is the mapping of ability-based sensor technologies onto
the Framework, to enable the future implementation of a smartphone application. Through the
exploitation of the SmartAbility application, the Framework will increase technology amongst people
with reduced physical ability and provide a promotional tool for assistive technology manufacturers
Stressful situation if CENP-A not front and CENter
The exclusive localization of the histone H3 variant CENP-A to centromeres is essential for accurate chromosome segregation. Ubiquitin-mediated proteolysis helps to ensure that CENP-A does not mislocalize to euchromatin, which can lead to genomic instability. Consistent with this, overexpression of the budding yeast CENP-A(Cse4) is lethal in cells lacking Psh1, the E3 ubiquitin ligase that targets CENP-A(Cse4) for degradation. To identify additional mechanisms that prevent CENP-A(Cse4) misincorporation and lethality, we analyzed the genome-wide mislocalization pattern of overexpressed CENP-A(Cse4) in the presence and absence of Psh1 by chromatin immunoprecipitation followed by high throughput sequencing. We found that ectopic CENP-A(Cse4) is enriched at promoters that contain histone H2A.Z(Htz1) nucleosomes, but that H2A.Z(Htz1) is not required for CENP-A(Cse4) mislocalization. Instead, the INO80 complex, which removes H2A.Z(Htz1) from nucleosomes, promotes the ectopic deposition of CENP-A(Cse4). Transcriptional profiling revealed gene expression changes in the psh1Δ cells overexpressing CENP-A(Cse4). The down-regulated genes are enriched for CENP-A(Cse4) mislocalization to promoters, while the up-regulated genes correlate with those that are also transcriptionally up-regulated in an htz1Δ strain. Together, these data show that regulating centromeric nucleosome localization is not only critical for maintaining centromere function, but also for ensuring accurate promoter function and transcriptional regulation
Basic mechanisms of urgency: roles and benefits of pharmacotherapy
Introduction
Since urgency is key to the overactive bladder syndrome, we have reviewed the mechanisms underlying how bladder filling and urgency are sensed, what causes urgency and how this relates to medical therapy.
Materials and methods
Review of published literature.
Results
As urgency can only be assessed in cognitively intact humans, mechanistic studies of urgency often rely on proxy or surrogate parameters, such as detrusor overactivity, but these may not necessarily be reliable. There is an increasing evidence base to suggest that the sensation of ‘urgency’ differs from the normal physiological urge to void upon bladder filling. While the relative roles of alterations in afferent processes, central nervous processing, efferent mechanisms and in intrinsic bladder smooth muscle function remain unclear, and not necessarily mutually exclusive, several lines of evidence support an important role for the latter.
Conclusions
A better understanding of urgency and its causes may help to develop more effective treatments for voiding dysfunction
Reconstruction of metabolic pathways for the cattle genome
<p>Abstract</p> <p>Background</p> <p>Metabolic reconstruction of microbial, plant and animal genomes is a necessary step toward understanding the evolutionary origins of metabolism and species-specific adaptive traits. The aims of this study were to reconstruct conserved metabolic pathways in the cattle genome and to identify metabolic pathways with missing genes and proteins. The MetaCyc database and PathwayTools software suite were chosen for this work because they are widely used and easy to implement.</p> <p>Results</p> <p>An amalgamated cattle genome database was created using the NCBI and Ensembl cattle genome databases (based on build 3.1) as data sources. PathwayTools was used to create a cattle-specific pathway genome database, which was followed by comprehensive manual curation for the reconstruction of metabolic pathways. The curated database, CattleCyc 1.0, consists of 217 metabolic pathways. A total of 64 mammalian-specific metabolic pathways were modified from the reference pathways in MetaCyc, and two pathways previously identified but missing from MetaCyc were added. Comparative analysis of metabolic pathways revealed the absence of mammalian genes for 22 metabolic enzymes whose activity was reported in the literature. We also identified six human metabolic protein-coding genes for which the cattle ortholog is missing from the sequence assembly.</p> <p>Conclusion</p> <p>CattleCyc is a powerful tool for understanding the biology of ruminants and other cetartiodactyl species. In addition, the approach used to develop CattleCyc provides a framework for the metabolic reconstruction of other newly sequenced mammalian genomes. It is clear that metabolic pathway analysis strongly reflects the quality of the underlying genome annotations. Thus, having well-annotated genomes from many mammalian species hosted in BioCyc will facilitate the comparative analysis of metabolic pathways among different species and a systems approach to comparative physiology.</p
Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.
PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks
- …