19 research outputs found

    Early Jurassic North Atlantic sea-surface temperatures from TEX<sub>86 </sub>palaeothermometry

    Get PDF
    Early Jurassic marine palaeotemperatures have been typically quantified by oxygen-isotope palaeothermometry of benthic and nektonic carbonate and phosphatic macrofossils. However, records of Early Jurassic sea-surface temperatures (SSTs) that can be directly compared with General Circulation Model (GCM) simulations of past climates are currently unavailable. The TEX86 SST proxy is based upon the relative abundance of glycerol dialkyl glycerol tetraethers (GDGTs) preserved in organic-carbon-bearing sediments. This proxy has been used extensively on Cretaceous and Cenozoic materials and, in one study, Middle and Upper Jurassic sediments. Here TEX86 is applied, for the first time, to Lower Jurassic (Sinemurian–Pliensbachian) sediments cored at Deep Sea Drilling Project Site 547 in the North Atlantic. The abundance of GDGTs in these sediments is very low, despite biomarker and Rock-Eval data suggesting that thermal maturity is, generally, low. Sea-floor oxygenation and a high input of reworked terrestrially sourced organic matter may explain the low concentrations. For samples from which it was possible to quantify the relative abundance of GDGTs, TEX86 values range from 0.78 to 0.88, equating to SSTs in excess of >28˚C. These temperatures are broadly comparable with new GCM simulations of the Sinemurian and Pliensbachian stages and support the general view of a predominantly warm climate. The new proxy data suggest that, under favourable geological conditions, it is possible to extend the record of TEX86-based SSTs back into the Early Jurassic

    The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide

    Get PDF
    Background: A plant-based diet protects against chronic oxidative stress-related diseases. Dietary plants contain variable chemical families and amounts of antioxidants. It has been hypothesized that plant antioxidants may contribute to the beneficial health effects of dietary plants. Our objective was to develop a comprehensive food database consisting of the total antioxidant content of typical foods as well as other dietary items such as traditional medicine plants, herbs and spices and dietary supplements. This database is intended for use in a wide range of nutritional research, from in vitro and cell and animal studies, to clinical trials and nutritional epidemiological studies. Methods: We procured samples from countries worldwide and assayed the samples for their total antioxidant content using a modified version of the FRAP assay. Results and sample information (such as country of origin, product and/or brand name) were registered for each individual food sample and constitute the Antioxidant Food Table. Results: The results demonstrate that there are several thousand-fold differences in antioxidant content of foods. Spices, herbs and supplements include the most antioxidant rich products in our study, some exceptionally high. Berries, fruits, nuts, chocolate, vegetables and products thereof constitute common foods and beverages with high antioxidant values. Conclusions: This database is to our best knowledge the most comprehensive Antioxidant Food Database published and it shows that plant-based foods introduce significantly more antioxidants into human diet than non-plant foods. Because of the large variations observed between otherwise comparable food samples the study emphasizes the importance of using a comprehensive database combined with a detailed system for food registration in clinical and epidemiological studies. The present antioxidant database is therefore an essential research tool to further elucidate the potential health effects of phytochemical antioxidants in diet

    Increased peri-ductal collagen micro-organization may contribute to raised mammographic density

    Get PDF
    BACKGROUND: High mammographic density is a therapeutically modifiable risk factor for breast cancer. Although mammographic density is correlated with the relative abundance of collagen-rich fibroglandular tissue, the causative mechanisms, associated structural remodelling and mechanical consequences remain poorly defined. In this study we have developed a new collaborative bedside-to-bench workflow to determine the relationship between mammographic density, collagen abundance and alignment, tissue stiffness and the expression of extracellular matrix organising proteins. METHODS: Mammographic density was assessed in 22 post-menopausal women (aged 54–66 y). A radiologist and a pathologist identified and excised regions of elevated non-cancerous X-ray density prior to laboratory characterization. Collagen abundance was determined by both Masson’s trichrome and Picrosirius red staining (which enhances collagen birefringence when viewed under polarised light). The structural specificity of these collagen visualisation methods was determined by comparing the relative birefringence and ultrastructure (visualised by atomic force microscopy) of unaligned collagen I fibrils in reconstituted gels with the highly aligned collagen fibrils in rat tail tendon. Localised collagen fibril organisation and stiffness was also evaluated in tissue sections by atomic force microscopy/spectroscopy and the abundance of key extracellular proteins was assessed using mass spectrometry. RESULTS: Mammographic density was positively correlated with the abundance of aligned periductal fibrils rather than with the abundance of amorphous collagen. Compared with matched tissue resected from the breasts of low mammographic density patients, the highly birefringent tissue in mammographically dense breasts was both significantly stiffer and characterised by large (>80 Όm long) fibrillar collagen bundles. Subsequent proteomic analyses not only confirmed the absence of collagen fibrosis in high mammographic density tissue, but additionally identified the up-regulation of periostin and collagen XVI (regulators of collagen fibril structure and architecture) as potential mediators of localised mechanical stiffness. CONCLUSIONS: These preliminary data suggest that remodelling, and hence stiffening, of the existing stromal collagen microarchitecture promotes high mammographic density within the breast. In turn, this aberrant mechanical environment may trigger neoplasia-associated mechanotransduction pathways within the epithelial cell population. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13058-015-0664-2) contains supplementary material, which is available to authorized users

    Web and phone-based COVID-19 syndromic surveillance in Canada: A cross-sectional study.

    No full text
    BackgroundSyndromic surveillance through web or phone-based polling has been used to track the course of infectious diseases worldwide. Our study objective was to describe the characteristics, symptoms, and self-reported testing rates of respondents in three different COVID-19 symptom surveys in Canada.MethodsThis was a cross-sectional study using three distinct Canada-wide web-based surveys, and phone polling in Ontario. All three sources contained self-reported information on COVID-19 symptoms and testing. In addition to describing respondent characteristics, we examined symptom frequency and the testing rate among the symptomatic, as well as rates of symptoms and testing across respondent groups.ResultsWe found that over March- April 2020, 1.6% of respondents experienced a symptom on the day of their survey, 15% of Ontario households had a symptom in the previous week, and 44% of Canada-wide respondents had a symptom in the previous month. Across the three surveys, SARS-CoV-2-testing was reported in 2-9% of symptomatic responses. Women, younger and middle-aged adults (versus older adults) and Indigenous/First nations/Inuit/MĂ©tis were more likely to report at least one symptom, and visible minorities were more likely to report the combination of fever with cough or shortness of breath.InterpretationThe low rate of testing among those reporting symptoms suggests significant opportunity to expand testing among community-dwelling residents of Canada. Syndromic surveillance data can supplement public health reports and provide much-needed context to gauge the adequacy of SARS-CoV-2 testing rates

    Aspirin and NSAID use and the risk of COVID-19

    No full text
    Early reports raised concern that use of non-steroidal anti-inflammatory drugs (NSAIDs) may increase risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease (COVID-19). Users of the COVID Symptom Study smartphone application reported use of aspirin and other NSAIDs between March 24 and May 8, 2020. Users were queried daily about symptoms, COVID-19 testing, and healthcare seeking behavior. Cox proportional hazards regression was used to determine the risk of COVID-19 among according to aspirin or non-aspirin NSAID users. Among 2,736,091 individuals in the U.S., U.K., and Sweden, we documented 8,966 incident reports of a positive COVID-19 test over 60,817,043 person-days of follow-up. Compared to non-users and after stratifying by age, sex, country, day of study entry, and race/ethnicity, non-aspirin NSAID use was associated with a modest risk for testing COVID-19 positive (HR 1.23 [1.09, 1.32]), but no significant association was observed among aspirin users (HR 1.13 [0.92, 1.38]). After adjustment for lifestyle factors, comorbidities and baseline symptoms, any NSAID use was not associated with risk (HR 1.02 [0.94, 1.10]). Results were similar for those seeking healthcare for COVID-19 and were not substantially different according to lifestyle and sociodemographic factors or after accounting for propensity to receive testing. Our results do not support an association of NSAID use, including aspirin, with COVID-19 infection. Previous reports of a potential association may be due to higher rates of comorbidities or use of NSAIDs to treat symptoms associated with COVID-19.One Sentence Summary NSAID use is not associated with COVID-19 risk.Competing Interest StatementJW, RD, and JC are employees of Zoe Global Ltd. TDS is a consultant to Zoe Global Ltd. DAD and ATC previously served as investigators on a clinical trial of diet and lifestyle using a separate mobile application that was supported by Zoe Global Ltd. Other authors have no conflict of interest to declare.Clinical TrialNCT04331509Funding StatementZoe provided in kind support for all aspects of building running and supporting the app and service to all users worldwide. DAD is supported by the National Institute of Diabetes and Digestive and Kidney Diseases K01DK120742. CGG is supported by the Bau Tsu Zung Bau Kwan Yeu Hing Research and Clinical Fellowship. LHN is supported by the American Gastroenterological Association Research Scholars Award. ATC is the Stuart and Suzanne Steele MGH Research Scholar and Stand Up to Cancer scientist. The Massachusetts Consortium on Pathogen Readiness (MassCPR) and Mark and Lisa Schwartz supported MGH investigators (DAD CGG LHN ADJ WM RSM CHL SK ATC). CMA is supported by the NIDDK K23 DK120899 and the Boston Childrens Hospital Office of Faculty Development Career Development Award. Kings College of London investigators (KAL MNL TV MSG CHS SO CJS TDS) were supported by the Wellcome Trust and EPSRC (WT212904/Z/18/Z WT203148/Z/16/Z T213038/Z/18/Z) the NIHR GSTT/KCL Biomedical Research Centre MRC/BHF (MR/M016560/1) UK Research and Innovation London Medical Imaging and Artificial Intelligence Centre for Value Based Healthcare and the Alzheimers Society (AS-JF-17-011). MNL is supported by an NIHR Doctoral Fellowship (NIHR300159). Work related to the Swedish elements of the study are supported by grants from the Swedish Research Council, Swedish Heart-Lung Foundation and the Swedish Foundation for Strategic Research (LUDC-IRC 15-0067). Sponsors had no role in study design analysis and interpretation of data report writing and the decision to submit for publication.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:Participants provided informed consent to the use of app data for research purposes and agreed to privacy policies and terms of use. This research study was approved by the Partners Human Research Committee IRB 2020P000909 Kings College London Ethics Committee REMAS ID 18210 Review Reference LRS-19/20-18210 and the central ethics committee in Sweden DNR 2020-01803All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesData collected in the app is being shared with other health researchers through the NHS-funded Health Data Research U.K. (HDRUK)/SAIL consortium, housed in the U.K. Secure Research Platform (UKSeRP) in Swansea. Anonymized data is available to be shared with bonafide researchers HDRUK according to their protocols (https://healthdatagateway.org/detail/9b604483-9cdc-41b2-b82c-14ee3dd705f6). U.S. investigators are encouraged to coordinate data requests through the COPE Consortium (www.monganinstitute.org/cope-consortium). Data updates can be found on https://covid.joinzoe.com

    A review of planting principles to identify the right place for the right tree for ‘net zero plus’ woodlands: Applying a place‐based natural capital framework for sustainable, efficient and equitable (SEE) decisions

    Get PDF
    We outline the principles of the natural capital approach to decision making and apply these to the contemporary challenge of very significantly expanding woodlands as contribution to attaining net zero emissions of greenhouse gases. Drawing on the case of the UK, we argue that a single focus upon carbon storage alone is likely to overlook the other ‘net zero plus’ benefits which woodlands can deliver. A review of the literature considers the wide variety of potential benefits which woodlands can provide, together with costs such as foregone alternative land uses. We argue that decision making must consider all of these potential benefits and costs for the right locations to be planted with the right trees. The paper closes by reviewing the decision support systems necessary to incorporate this information into policy and decision making
    corecore