28 research outputs found

    Genetic architecture of subcortical brain structures in 38,851 individuals

    Get PDF
    Subcortical brain structures are integral to motion, consciousness, emotions and learning. We identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus, using genome-wide association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank. We show that variability in subcortical volumes is heritable, and identify 48 significantly associated loci (40 novel at the time of analysis). Annotation of these loci by utilizing gene expression, methylation and neuropathological data identified 199 genes putatively implicated in neurodevelopment, synaptic signaling, axonal transport, apoptosis, inflammation/infection and susceptibility to neurological disorders. This set of genes is significantly enriched for Drosophila orthologs associated with neurodevelopmental phenotypes, suggesting evolutionarily conserved mechanisms. Our findings uncover novel biology and potential drug targets underlying brain development and disease

    Novel genetic loci underlying human intracranial volume identified through genome-wide association

    Get PDF
    Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five novel loci for intracranial volume and confirmed two known signals. Four of the loci are also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (ρgenetic=0.748), which indicated a similar genetic background and allowed for the identification of four additional loci through meta-analysis (Ncombined = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, Parkinson’s disease, and enriched near genes involved in growth pathways including PI3K–AKT signaling. These findings identify biological underpinnings of intracranial volume and provide genetic support for theories on brain reserve and brain overgrowth

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Author Correction:Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function

    Get PDF
    Christina M. Lill, who contributed to analysis of data, was inadvertently omitted from the author list in the originally published version of this article. This has now been corrected in both the PDF and HTML versions of the article

    Exploration of Shared Genetic Architecture Between Subcortical Brain Volumes and Anorexia Nervosa

    Get PDF

    Biological determinants of depression following bereavement

    No full text
    There is considerable variability among people in their response to bereavement. While most people adapt well to bereavement, some develop exaggerated and/or pathological responses and may meet criteria for a major depressive episode. Many studies have investigated the effect of psychosocial factors on bereavement outcome but biological factors have not received much attention, hence the focus of this paper. The biological factors studied to date in relation to bereavement outcomes include genetic polymorphisms, neuroendocrine factors, and immunologic/inflammatory markers. In addition, animal studies have shown the alterations of brain neurotransmitters as well as changes in the plasma levels of the neurotrophic growth factors under the influence of peer loss. Recent studies have also investigated the biological basis of stress resilience, and have found a few genetic polymorphisms and potential biomarkers as protective factors in the face of adversity. Longitudinal studies that include data collection prior to, and also after, bereavement and which chart both biological and psychological measures are needed to develop profiles for the prediction of response to bereavement and personalised interventions

    The politics of austerity in Ireland

    No full text
    Since the onset of the sovereign debt crisis, the crisis-stricken countries in Europe have been pushed to take drastic steps to consolidate their finances and reduce their budget deficits. Despite strong public opposition and largely damaging short-run effects, the countries have undertaken many of the internationally recommended/mandated reforms and spending cuts. In this Forum, authors from Greece, Ireland, Italy, Spain and Portugal report on the fiscal consolidation achieved in their respective countries — and the sacrifices that have made it possible. Furthermore, the authors detail what remains to be done to resolve the crisis.Author has checked copyrightAM

    Genome-wide significant results identified for plasma apolipoprotein H levels in middle-aged and older adults

    Get PDF
    Apolipoprotein H (ApoH) is a multi-functional plasma glycoprotein that has been associated with negative health outcomes. ApoH levels have high heritability. We undertook a genome-wide association study of ApoH levels using the largest sample to date and replicated the results in an independent cohort (total N = 1,255). In the discovery phase, a meta-analysis of two cohorts, the Sydney Memory and Ageing Study (Sydney MAS) and the Older Australian Twins Study (OATS) (n = 942) revealed genome-wide significant results in or near the APOH gene on chromosome 17 (top SNP, rs7211380, p = 1 × 10). The results were replicated in an independent cohort, the Hunter Community Study (p < 0.002) (n = 313). Conditional and joint analysis (COJO) confirmed the association of the chromosomal 17 region with ApoH levels. The set of independent SNPs identified by COJO explained 23% of the variance. The relationships between the top SNPs and cardiovascular/lipid/cognition measures and diabetes were assessed in Sydney MAS, with suggestive results observed for diabetes and cognitive performance. However, replication of these results in the smaller OATS cohort was not found. This work provides impetus for future research to better understand the contribution of genetics to ApoH levels and its possible impacts on health

    HV Association results examining the top 10 ranked genetic polymorphisms for late-onset Alzheimer’s Disease in the CHARGE discovery meta-analysis, Sydney MAS, OATS and meta-analyses of MAS/OATS.

    No full text
    <p><b>Notes</b>. Alzgene results from <a href="http://alzgene.org" target="_blank">http://alzgene.org</a>, accessed 10/12/12;</p><p><sup>a</sup>From [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0116920#pone.0116920.ref010" target="_blank">10</a>];</p><p><sup>b</sup> covariates: age & sex;</p><p><sup>c</sup><i>APOE ε4</i> carriers vs non-carriers;</p><p>Sydney MAS = Sydney Memory & Ageing Study; OATS = Older Australian Twins Study; n.a.: Not applicable due to poor imputation quality for this SNP; NA: not available;</p><p>* <i>p</i>≤.05;</p><p>** <i>p</i>≤.001</p><p>HV Association results examining the top 10 ranked genetic polymorphisms for late-onset Alzheimer’s Disease in the CHARGE discovery meta-analysis, Sydney MAS, OATS and meta-analyses of MAS/OATS.</p
    corecore