295 research outputs found

    Design, Optimization, and Evaluation of Integrally-Stiffened Al-2139 Panel with Curved Stiffeners

    Get PDF
    A curvilinear stiffened panel was designed, manufactured, and tested in the Combined Load Test Fixture at NASA Langley Research Center. The panel is representative of a large wing engine pylon rib and was optimized for minimum mass subjected to three combined load cases. The optimization included constraints on web buckling, material yielding, crippling or local stiffener failure, and damage tolerance using a new analysis tool named EBF3PanelOpt. Testing was performed for the critical combined compression-shear loading configuration. The panel was loaded beyond initial buckling, and strains and out-of-plane displacements were extracted from a total of 20 strain gages and 6 linear variable displacement transducers. The VIC-3D system was utilized to obtain full field displacements/strains in the stiffened side of the panel. The experimental data were compared with the strains and out-of-plane deflections from a high fidelity nonlinear finite element analysis. The experimental data were also compared with linear elastic finite element results of the panel/test-fixture assembly. Overall, the panel buckled very near to the predicted load in the web regions

    Evaluating machine learning techniques for archaeological lithic sourcing: a case study of flint in Britain

    Get PDF
    The original version of this Article contained errors in the legends of Figure 8 and 9. The legend of Figure 8: “Learning curve shows F1 score for train and test data against number of observations in training data.” now reads: “Box Plot of F1 Scores for each model, showing good equality of variances.

    Design, Optimization, and Evaluation of A1-2139 Compression Panel with Integral T-Stiffeners

    Get PDF
    A T-stiffened panel was designed and optimized for minimum mass subjected to constraints on buckling load, yielding, and crippling or local stiffener failure using a new analysis and design tool named EBF3PanelOpt. The panel was designed for a compression loading configuration, a realistic load case for a typical aircraft skin-stiffened panel. The panel was integrally machined from 2139 aluminum alloy plate and was tested in compression. The panel was loaded beyond buckling and strains and out-of-plane displacements were extracted from 36 strain gages and one linear variable displacement transducer. A digital photogrammetric system was used to obtain full field displacements and strains on the smooth (unstiffened) side of the panel. The experimental data were compared with the strains and out-of-plane deflections from a high-fidelity nonlinear finite element analysis

    Design, Optimization and Evaluation of Integrally Stiffened Al 7050 Panel with Curved Stiffeners

    Get PDF
    A curvilinear stiffened panel was designed, manufactured, and tested in the Combined Load Test Fixture at NASA Langley Research Center. The panel was optimized for minimum mass subjected to constraints on buckling load, yielding, and crippling or local stiffener failure using a new analysis tool named EBF3PanelOpt. The panel was designed for a combined compression-shear loading configuration that is a realistic load case for a typical aircraft wing panel. The panel was loaded beyond buckling and strains and out-of-plane displacements were measured. The experimental data were compared with the strains and out-of-plane deflections from a high fidelity nonlinear finite element analysis and linear elastic finite element analysis of the panel/test-fixture assembly. The numerical results indicated that the panel buckled at the linearly elastic buckling eigenvalue predicted for the panel/test-fixture assembly. The experimental strains prior to buckling compared well with both the linear and nonlinear finite element model

    Field Performance of a Rapid Test to Detect Progressive, Regressive, and Abortive Feline Leukemia Virus Infections in Domestic Cats in Australia and Germany

    Full text link
    Different feline leukemia virus (FeLV) infection outcomes are possible in cats following natural exposure, such as progressive infections (persistent viremia), regressive infections (transient or no viremia followed by proviral persistence) and abortive infections (presence of only antibodies). Laboratory-based testing is currently required for categorization of infection outcomes in cats. The aim of this study was to evaluate the field performance of a novel, rapid, combination point-of-care (PoC) test kit commercially available in Europe (v-RetroFel®Ag/Ab; 2020–2021 version) to determine different FeLV infection outcomes by concurrent detection of FeLV antigen (p27) and antibodies against FeLV transmembrane envelope protein (p15E). A secondary aim was to evaluate the performance of the same test kit (v-RetroFel®FIV) to determine positive/negative feline immunodeficiency virus (FIV) infection status by the detection of antibodies to FIV capsid protein (p24) and transmembrane glycoprotein (gp40). Two cohorts of domestic cats were recruited and tested with v-RetroFel® using plasma or serum, including cats in Australia (n = 200) and cats in Germany (n = 170). Results from p27 antigen PoC testing, proviral DNA PCR, and neutralizing antibody testing or testing for antibodies against non-glycosylated surface unit envelope protein (p45) were used to assign cats to groups according to different FeLV infection outcomes. Testing with a laboratory-based FeLV p15E antibody ELISA was also performed for comparison. In the first cohort, v-RetroFel®Ag/Ab correctly identified 89% (109/122) FeLV-unexposed cats and 91% (21/23) progressive infections, but no regressive (0/23) or abortive (0/32) infections. In the second cohort, v-RetroFel®Ag/Ab correctly identified 94% (148/158) FeLV-unexposed cats and 100% (4/4) progressive infections, but no regressive (0/2) and only 17% (1/6) abortive infections. There was test agreement between v-RetroFel®Ab and the p15E laboratory ELISA in 58.9% of samples. As a secondary outcome of this study, the sensitivity and specificity of v-RetroFel®FIV testing in cohort 1 were 94.7% (18/19) and 98.3% (178/181), and in cohort 2, 30.0% (3/10) and 100.0% (160/160), respectively. Prior history of FIV vaccination did not produce any false-positive FIV results. In conclusion, v-RetroFel®Ag/Ab (2020–2021 version) was unable to accurately determine different FeLV infection outcomes in the field. Improvements of the test prior to application to field samples are required

    Linking compact dwarf starburst galaxies in the resolve survey to downsized blue nuggets

    Get PDF
    Abstract We identify and characterize compact dwarf starburst (CDS) galaxies in the RESOLVE survey, a volume-limited census of galaxies in the local universe, to probe whether this population contains any residual “blue nuggets,” a class of intensely star-forming compact galaxies first identified at high redshift z. Our 50 low-z CDS galaxies are defined by dwarf masses (stellar mass M* < 109.5 M⊙), compact bulged-disk or spheroid-dominated morphologies (using a quantitative criterion, \mu _\Delta > 8.6), and specific star formation rates above the defining threshold for high-z blue nuggets (log SSFR [Gyr−1] > −0.5). Across redshifts, blue nuggets exhibit three defining properties: compactness relative to contemporaneous galaxies, abundant cold gas, and formation via compaction in mergers or colliding streams. Those with halo mass below Mhalo ∼ 1011.5 M⊙ may in theory evade permanent quenching and cyclically refuel until the present day. Selected only for compactness and starburst activity, our CDS galaxies generally have Mhalo ≲ 1011.5 M⊙ and gas-to-stellar mass ratio ≳1. Moreover, analysis of archival DECaLS photometry and new 3D spectroscopic observations for CDS galaxies reveals a high rate of photometric and kinematic disturbances suggestive of dwarf mergers. The SSFRs, surface mass densities, and number counts of CDS galaxies are compatible with theoretical and observational expectations for redshift evolution in blue nuggets. We argue that CDS galaxies represent a maximally-starbursting subset of traditional compact dwarf classes such as blue compact dwarfs and blue E/S0s. We conclude that CDS galaxies represent a low-z tail of the blue nugget phenomenon formed via a moderated compaction channel that leaves open the possibility of disk regrowth and evolution into normal disk galaxies

    Looking Into the Fireball: ROTSE-III and Swift Observations of Early GRB Afterglows

    Get PDF
    We report on a complete set of early optical afterglows of gamma-ray bursts (GRBs) obtained with the ROTSE-III telescope network from March 2005 through June 2007. This set is comprised of 12 afterglows with early optical and Swift/XRT observations, with a median ROTSE-III response time of 45 s after the start of gamma-ray emission (8 s after the GCN notice time). These afterglows span four orders of magnitude in optical luminosity, and the contemporaneous X-ray detections allow multi-wavelength spectral analysis. Excluding X-ray flares, the broadband synchrotron spectra show that the optical and X-ray emission originate in a common region, consistent with predictions of the external forward shock in the fireball model. However, the fireball model is inadequate to predict the temporal decay indices of the early afterglows, even after accounting for possible long-duration continuous energy injection. We find that the optical afterglow is a clean tracer of the forward shock, and we use the peak time of the forward shock to estimate the initial bulk Lorentz factor of the GRB outflow, and find 100<Gamma_0<1000, consistent with expectations.Comment: 31 pages, 5 figures, submitted to Ap
    corecore