66 research outputs found

    Unsupervised Category Learning with Integral-Dimension Stimuli

    Get PDF
    Despite the recent surge in research on unsupervised category learning, the majority of studies have focused on unconstrained tasks in which no instructions are provided about the underlying category structure. Relatively little research has focused on constrained tasks in which the goal is to learn pre-defined stimulus clusters in the absence of feedback. The few studies that have addressed this issue have focused almost exclusively on stimuli for which it is relatively easy to attend selectively to the component dimensions (i.e., separable dimensions). In the present study, we investigated the ability of participants to learn categories constructed from stimuli for which it is difficult, if not impossible, to attend selectively to the component dimensions (i.e., integral dimensions). The experiments demonstrate that individuals are capable of learning categories constructed from the integral dimensions of brightness and saturation, but this ability is generally limited to category structures requiring selective attention to brightness. As might be expected with integral dimensions, participants were often able to integrate brightness and saturation information in the absence of feedback – an ability not observed in previous studies with separable dimensions. Even so, there was a bias to weight brightness more heavily than saturation in the categorization process, suggesting a weak form of selective attention to brightness. These data present an important challenge for the development of models of unsupervised category learning

    Grand Challenges of Advanced Computing for Energy Innovation Report from the Workshop Held July 31-August 2, 2012

    Full text link
    On July 31-August 2 of 2012, the U.S. Department of Energy (DOE) held a workshop entitled Grand Challenges of Advanced Computing for Energy Innovation. This workshop built on three earlier workshops that clearly identified the potential for the Department and its national laboratories to enable energy innovation. The specific goal of the workshop was to identify the key challenges that the nation must overcome to apply the full benefit of taxpayer-funded advanced computing technologies to U.S. energy innovation in the ways that the country produces, moves, stores, and uses energy. Perhaps more importantly, the workshop also developed a set of recommendations to help the Department overcome those challenges. These recommendations provide an action plan for what the Department can do in the coming years to improve the nation’s energy future

    Practical help for specifying the target difference in sample size calculations for RCTs: the DELTA2 five-stage study, including a workshop

    Get PDF
    BACKGROUND: The randomised controlled trial is widely considered to be the gold standard study for comparing the effectiveness of health interventions. Central to its design is a calculation of the number of participants needed (the sample size) for the trial. The sample size is typically calculated by specifying the magnitude of the difference in the primary outcome between the intervention effects for the population of interest. This difference is called the 'target difference' and should be appropriate for the principal estimand of interest and determined by the primary aim of the study. The target difference between treatments should be considered realistic and/or important by one or more key stakeholder groups. OBJECTIVE: The objective of the report is to provide practical help on the choice of target difference used in the sample size calculation for a randomised controlled trial for researchers and funder representatives. METHODS: The Difference ELicitation in TriAls2 (DELTA2) recommendations and advice were developed through a five-stage process, which included two literature reviews of existing funder guidance and recent methodological literature; a Delphi process to engage with a wider group of stakeholders; a 2-day workshop; and finalising the core document. RESULTS: Advice is provided for definitive trials (Phase III/IV studies). Methods for choosing the target difference are reviewed. To aid those new to the topic, and to encourage better practice, 10 recommendations are made regarding choosing the target difference and undertaking a sample size calculation. Recommended reporting items for trial proposal, protocols and results papers under the conventional approach are also provided. Case studies reflecting different trial designs and covering different conditions are provided. Alternative trial designs and methods for choosing the sample size are also briefly considered. CONCLUSIONS: Choosing an appropriate sample size is crucial if a study is to inform clinical practice. The number of patients recruited into the trial needs to be sufficient to answer the objectives; however, the number should not be higher than necessary to avoid unnecessary burden on patients and wasting precious resources. The choice of the target difference is a key part of this process under the conventional approach to sample size calculations. This document provides advice and recommendations to improve practice and reporting regarding this aspect of trial design. Future work could extend the work to address other less common approaches to the sample size calculations, particularly in terms of appropriate reporting items. FUNDING: Funded by the Medical Research Council (MRC) UK and the National Institute for Health Research as part of the MRC-National Institute for Health Research Methodology Research programme

    Decisions that hasten death: double effect and the experiences of physicians in Australia

    Get PDF
    BACKGROUND: In Australian end-of-life care, practicing euthanasia or physician-assisted suicide is illegal. Despite this, death hastening practices are common across medical settings. Practices can be clandestine or overt but in many instances physicians are forced to seek protection behind ambiguous medico-legal imperatives such as the Principle of Double Effect. Moreover, the way they conceptualise and experience such practices is inconsistent. To complement the available statistical data, the purpose of this study was to understand the reasoning behind how and why physicians in Australia will hasten death. METHOD: A qualitative investigation was focused on palliative and critical/acute settings. A thematic analysis was conducted on semi-structured in-depth interviews with 13 specialist physicians. Attention was given to eliciting meanings and experiences in Australian end-of-life care. RESULTS: Highlighting the importance of a multidimensional approach, physicians negotiated multiple influences when death was regarded as hastened. The way they understood and experienced end-of-life care practices were affected by politico-religious and cultural influences, medico-legal imperatives, and personal values and beliefs. Interpersonal and intrapsychic aspects further emphasised the emotional and psychological investment physicians have with patients and others. In most cases death occurred as a result of treating suffering, and sometimes to fulfil the wishes of patients and others who requested death. Experience was especially subject to the efficacy with which physicians negotiated complex but context-specific situations, and was reflective of how they considered a good death. Although many were compelled to draw on the Principle of Double Effect, every physician reported its inadequacy as a medico-legal guideline. CONCLUSIONS: The Principle of Double Effect, as a simplistic and generalised guideline, was identified as a convenient mechanism to protect physicians who inadvertently or intentionally hastened death. But its narrow focus on the physician’s intent illuminated how easily it may be manipulated, thus impairing transparency and a physician’s capacity for honesty. It is suggested the concept of “force majeure” be examined for its applicability in Australian medical end-of-life law where, consistent with a multidimensional and complex world, a physician’s motivations can also be understood in terms of the emotional and psychological pressures they face in situations that hasten death

    Performance of the infrared array camera (IRAC) for SIRTF during instrument integration and test

    Get PDF
    The Infrared Array Camera (IRAC) is one of three focal plane instruments in the Space Infrared Telescope Facility (SIRTF). IRAC is a four-channel camera that obtains simultaneous images at 3.6, 4.5, 5.8, and 8 microns. Two adjacent 5.12x5.12 arcmin fields of view in the SIRTF focal plane are viewed by the four channels in pairs (3.6 and 5.8 microns; 4.5 and 8 microns). All four detector arrays in the camera are 256x256 pixels in size, with the two shorter wavelength channels using InSb and the two longer wavelength channels using Si:As IBC detectors. We describe here the results of the instrument functional and calibration tests completed at Ball Aerospace during the integration with the cryogenic telescope assembly, and provide updated estimates of the in-flight sensitivity and performance of IRAC in SIRTF

    CANDELS: The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey

    Get PDF
    The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) is designed to document the first third of galactic evolution, over the approximate redshift (z) range 8--1.5. It will image >250,000 distant galaxies using three separate cameras on the Hubble Space Telescope, from the mid-ultraviolet to the near-infrared, and will find and measure Type Ia supernovae at z>1.5 to test their accuracy as standardizable candles for cosmology. Five premier multi-wavelength sky regions are selected, each with extensive ancillary data. The use of five widely separated fields mitigates cosmic variance and yields statistically robust and complete samples of galaxies down to a stellar mass of 10^9 M_\odot to z \approx 2, reaching the knee of the ultraviolet luminosity function (UVLF) of galaxies to z \approx 8. The survey covers approximately 800 arcmin^2 and is divided into two parts. The CANDELS/Deep survey (5\sigma\ point-source limit H=27.7 mag) covers \sim 125 arcmin^2 within GOODS-N and GOODS-S. The CANDELS/Wide survey includes GOODS and three additional fields (EGS, COSMOS, and UDS) and covers the full area to a 5\sigma\ point-source limit of H \gtrsim 27.0 mag. Together with the Hubble Ultra Deep Fields, the strategy creates a three-tiered "wedding cake" approach that has proven efficient for extragalactic surveys. Data from the survey are nonproprietary and are useful for a wide variety of science investigations. In this paper, we describe the basic motivations for the survey, the CANDELS team science goals and the resulting observational requirements, the field selection and geometry, and the observing design. The Hubble data processing and products are described in a companion paper.Comment: Submitted to Astrophysical Journal Supplement Series; Revised version, subsequent to referee repor

    CANDELS: The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey - The Hubble Space Telescope Observations, Imaging Data Products and Mosaics

    Get PDF
    This paper describes the Hubble Space Telescope imaging data products and data reduction procedures for the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS). This survey is designed to document the evolution of galaxies and black holes at z∌1.5−8z\sim1.5-8, and to study Type Ia SNe beyond z>1.5z>1.5. Five premier multi-wavelength sky regions are selected, each with extensive multiwavelength observations. The primary CANDELS data consist of imaging obtained in the Wide Field Camera 3 / infrared channel (WFC3/IR) and UVIS channel, along with the Advanced Camera for Surveys (ACS). The CANDELS/Deep survey covers \sim125 square arcminutes within GOODS-N and GOODS-S, while the remainder consists of the CANDELS/Wide survey, achieving a total of \sim800 square arcminutes across GOODS and three additional fields (EGS, COSMOS, and UDS). We summarize the observational aspects of the survey as motivated by the scientific goals and present a detailed description of the data reduction procedures and products from the survey. Our data reduction methods utilize the most up to date calibration files and image combination procedures. We have paid special attention to correcting a range of instrumental effects, including CTE degradation for ACS, removal of electronic bias-striping present in ACS data after SM4, and persistence effects and other artifacts in WFC3/IR. For each field, we release mosaics for individual epochs and eventual mosaics containing data from all epochs combined, to facilitate photometric variability studies and the deepest possible photometry. A more detailed overview of the science goals and observational design of the survey are presented in a companion paper.Comment: 39 pages, 25 figure

    Na sombra do VietnĂŁ: o nacionalismo liberal e o problema da guerra

    Full text link

    Exponential growth, high prevalence of SARS-CoV-2, and vaccine effectiveness associated with the Delta variant

    Get PDF
    SARS-CoV-2 infections were rising during early summer 2021 in many countries associated with the Delta variant. We assessed RT-PCR swab-positivity in the REal-time Assessment of Community Transmission-1 (REACT-1) study in England. We observed sustained exponential growth with average doubling time (June-July 2021) of 25 days driven by complete replacement of Alpha variant by Delta, and by high prevalence at younger less-vaccinated ages. Unvaccinated people were three times more likely than double-vaccinated people to test positive. However, after adjusting for age and other variables, vaccine effectiveness for double-vaccinated people was estimated at between ~50% and ~60% during this period in England. Increased social mixing in the presence of Delta had the potential to generate sustained growth in infections, even at high levels of vaccination
    • 

    corecore