685 research outputs found

    The Mid-IR and X-ray Selected QSO Luminosity Function

    Full text link
    We present the J-band luminosity function of 1838 mid-infrared and X-ray selected AGNs in the redshift range 0<z<5.85. These luminosity functions are constructed by combining the deep multi-wavelength broad-band observations from the UV to the mid-IR of the NDWFS Bootes field with the X-ray observations of the XBootes survey and the spectroscopic observations of the same field by AGES. Our sample is primarily composed of IRAC-selected AGNs, targeted using modifications of the Stern et al.(2005) criteria, complemented by MIPS 24 microns and X-ray selected AGNs to alleviate the biases of IRAC mid-IR selection against z~4.5 quasars and AGNs faint with respect to their hosts. This sample provides an accurate link between low and high redshift AGN luminosity functions and does not suffer from the usual incompleteness of optical samples at z~3. We find that the space density of the brightest quasars strongly decreases from z=3 to z=0, while the space density of faint quasars is at least flat, and possibly increasing, over the same redshift range. At z>3 we observe a decrease in the space density of quasars of all brightnesses. We model the luminosity function by a double power-law and find that its evolution cannot be described by either pure luminosity or pure density evolution, but must be a combination of both. Our best-fit model has bright and faint power-law indices consistent with the low redshift measurements based on the 2QZ and 2SLAQ surveys and it generally agrees with the number of bright quasars predicted by other LFs at all redshifts. If we construct the QSO luminosity function using only the IRAC-selected AGNs, we find that the biases inherent to this selection method significantly modify the behavior of phi*(z) only for z<1 and have no significant impact upon the characteristic magnitude M*_J(z).Comment: Corrected minor typo in equations (4) and (6). Accepted for publication in The Astrophysical Journal. 56 pages + 6 tables + 16 figure

    Gravitomagnetism and the Earth-Mercury range

    Full text link
    We numerically work out the impact of the general relativistic Lense-Thirring effect on the Earth-Mercury range caused by the gravitomagnetic field of the rotating Sun. The peak-to peak nominal amplitude of the resulting time-varying signal amounts to 1.75 10^1 m over a temporal interval 2 yr. Future interplanetary laser ranging facilities should reach a cm-level in ranging to Mercury over comparable timescales; for example, the BepiColombo mission, to be launched in 2014, should reach a 4.5 - 10 cm level over 1 - 8 yr. We looked also at other Newtonian (solar quadrupole mass moment, ring of the minor asteroids, Ceres, Pallas, Vesta, Trans-Neptunian Objects) and post-Newtonian (gravitoelectric Schwarzschild solar field) dynamical effects on the Earth-Mercury range. They act as sources of systematic errors for the Lense-Thirring signal which, in turn, if not properly modeled, may bias the recovery of some key parameters of such other dynamical features of motion. Their nominal peak-to-peak amplitudes are as large as 4 10^5 m (Schwarzschild), 3 10^2 m (Sun's quadrupole), 8 10^1 m (Ceres, Pallas, Vesta), 4 m (ring of minor asteroids), 8 10^-1 m (Trans-Neptunian Objects). Their temporal patterns are different with respect to that of the gravitomagnetic signal.Comment: LaTex2e, 19 pages, 2 tables, 6 figures. Small typo in pag. 1406 of the published version fixe

    The Mid-Infrared Properties of X-ray Sources

    Full text link
    We combine the results of the Spitzer IRAC Shallow Survey and the Chandra XBootes Survey of the 8.5 square degrees Bootes field of the NOAO Deep Wide- Field Survey to produce the largest comparison of mid-IR and X-ray sources to date. The comparison is limited to sources with X-ray fluxes >8x10-15 erg cm-2s-1 in the 0.5-7.0 keV range and mid-IR sources with 3.6 um fluxes brighter than 18.4 mag (12.3 uJy). In this most sensitive IRAC band, 85% of the 3086 X-ray sources have mid-IR counterparts at an 80% confidence level based on a Bayesian matching technique. Only 2.5% of the sample have no IRAC counterpart at all based on visual inspection. Even for a smaller but a significantly deeper Chandra survey in the same field, the IRAC Shallow Survey recovers most of the X-ray sources. A majority (65%) of the Chandra sources detected in all four IRAC bands occupy a well-defined region of IRAC [3.6] - [4.5] vs [5.8] - [8.0] color-color space. These X-ray sources are likely infrared luminous, unobscured type I AGN with little mid-infrared flux contributed by the AGN host galaxy. Of the remaining Chandra sources, most are lower luminosity type I and type II AGN whose mid-IR emission is dominated by the host galaxy, while approximately 5% are either Galactic stars or very local galaxies.Comment: Accepted for publication in Ap

    Low Resolution Spectral Templates For AGNs and Galaxies From 0.03 -- 30 microns

    Full text link
    We present a set of low resolution empirical SED templates for AGNs and galaxies in the wavelength range from 0.03 to 30 microns based on the multi-wavelength photometric observations of the NOAO Deep-Wide Field Survey Bootes field and the spectroscopic observations of the AGN and Galaxy Evolution Survey. Our training sample is comprised of 14448 galaxies in the redshift range 0<~z<~1 and 5347 likely AGNs in the range 0<~z<~5.58. We use our templates to determine photometric redshifts for galaxies and AGNs. While they are relatively accurate for galaxies, their accuracies for AGNs are a strong function of the luminosity ratio between the AGN and galaxy components. Somewhat surprisingly, the relative luminosities of the AGN and its host are well determined even when the photometric redshift is significantly in error. We also use our templates to study the mid-IR AGN selection criteria developed by Stern et al.(2005) and Lacy et al.(2004). We find that the Stern et al.(2005) criteria suffers from significant incompleteness when there is a strong host galaxy component and at z =~ 4.5, when the broad Halpha emission line is redshifted into the [3.6] band, but that it is little contaminated by low and intermediate redshift galaxies. The Lacy et al.(2004) criterion is not affected by incompleteness at z =~ 4.5 and is somewhat less affected by strong galaxy host components, but is heavily contaminated by low redshift star forming galaxies. Finally, we use our templates to predict the color-color distribution of sources in the upcoming WISE mission and define a color criterion to select AGNs analogous to those developed for IRAC photometry. We estimate that in between 640,000 and 1,700,000 AGNs will be identified by these criteria, but will have serious completeness problems for z >~ 3.4.Comment: Accepted for publication in The Astrophysical Journal. 26 text pages + 3 tables + 20 figures, modified to include comments made by the referee. Fortran codes, templates and electronic tables available at http://www.astronomy.ohio-state.edu/~rjassef/lrt

    Sickness presenteeism determines job satisfaction via affective-motivational states

    Get PDF
    Research on the consequences of sickness presenteeism, or the phenomenon of attending work whilst ill, has focused predominantly on identifying its economic, health, and absenteeism outcomes, neglecting important attitudinal-motivational outcomes. A mediation model of sickness presenteeism as a determinant of job satisfaction via affective-motivational states (specifically engagement with work and addiction to work) is proposed. This model adds to the current literature, by focusing on (i) job satisfaction as an outcome of presenteeism, and (ii) the psychological processes associated with this. It posits presenteeism as psychological absence and work engagement and work addiction as motivational states that originate in that. An online survey was completed by 158 office workers on sickness presenteeism, work engagement, work addiction, and job satisfaction. The results of bootstrapped mediation analysis with observable variables supported the model. Sickness presenteeism was negatively associated with job satisfaction. This relationship was fully mediated by both engagement with work and addiction to work, explaining a total of 48.07% of the variance in job satisfaction. Despite the small sample, the data provide preliminary support for the model. Given that there is currently no available research on the attitudinal consequences of presenteeism, these findings offer promise for advancing theorising in this area

    Synaptic alterations associated with disrupted sensory encoding in a mouse model of tauopathy

    Get PDF
    This is the final version. Available on open access from Oxford University Press via the DOI in this recordData availability: The data and analysis code used for this study are available from the corresponding author, upon reasonable request.Synapse loss is currently the best biological correlate of cognitive decline in Alzheimer’s disease and other tauopathies. Synapses seem to be highly vulnerable to tau-mediated disruption in neurodegenerative tauopathies. However, it is unclear how and when this leads to alterations in function related to the progression of tauopathy and neurodegeneration. We used the well-characterized rTg4510 mouse model of tauopathy at 5–6 months and 7–8 months of age, respectively, to study the functional impact of cortical synapse loss. The earlier age was used as a model of prodromal tauopathy, with the later age corresponding to more advanced tau pathology and presumed progression of neurodegeneration. Analysis of synaptic protein expression in the somatosensory cortex showed significant reductions in synaptic proteins and NMDA and AMPA receptor subunit expression in rTg4510 mice. Surprisingly, in vitro whole-cell patch clamp electrophysiology from putative pyramidal neurons in layer 2/3 of the somatosensory cortex suggested no functional alterations in layer 4 to layer 2/3 synaptic transmission at 5–6 months. From these same neurons, however, there were alterations in dendritic structure, with increased branching proximal to the soma in rTg4510 neurons. Therefore, in vivo whole-cell patch clamp recordings were utilized to investigate synaptic function and integration in putative pyramidal neurons in layer 2/3 of the somatosensory cortex. These recordings revealed a significant increase in the peak response to synaptically driven sensory stimulation-evoked activity and a loss of temporal fidelity of the evoked signal to the input stimulus in rTg4510 neurons. Together, these data suggest that loss of synapses, changes in receptor expression and dendritic restructuring may lead to alterations in synaptic integration at a network level. Understanding these compensatory processes could identify targets to help delay symptomatic onset of dementia.Medical Research Council (MRC)Alzheimer’s Research UKElizabeth Blackwell Institute, University of BristolWellcome Trus

    CANDELS/GOODS-S, CDFS, ECDFS: Photometric Redshifts For Normal and for X-Ray-Detected Galaxies

    Get PDF
    We present photometric redshifts and associated probability distributions for all detected sources in the Extended Chandra Deep Field South (ECDFS). The work makes use of the most up-to-date data from the Cosmic Assembly Near-IR Deep Legacy Survey (CANDELS) and the Taiwan ECDFS Near-Infrared Survey (TENIS) in addition to other data. We also revisit multi-wavelength counterparts for published X-ray sources from the 4Ms-CDFS and 250ks-ECDFS surveys, finding reliable counterparts for 1207 out of 1259 sources (96%\sim 96\%). Data used for photometric redshifts include intermediate-band photometry deblended using the TFIT method, which is used for the first time in this work. Photometric redshifts for X-ray source counterparts are based on a new library of AGN/galaxy hybrid templates appropriate for the faint X-ray population in the CDFS. Photometric redshift accuracy for normal galaxies is 0.010 and for X-ray sources is 0.014, and outlier fractions are 4%4\% and 5.4%5.4\% respectively. The results within the CANDELS coverage area are even better as demonstrated both by spectroscopic comparison and by galaxy-pair statistics. Intermediate-band photometry, even if shallow, is valuable when combined with deep broad-band photometry. For best accuracy, templates must include emission lines.Comment: The paper has been accepted by ApJ. The materials we provide are available under [Surveys] > [CDFS] through the portal http://www.mpe.mpg.de/XraySurvey

    The Evolution of the Star Formation Rate of Galaxies at 0.0 < z < 1.2

    Get PDF
    We present the 24 micron rest-frame luminosity function (LF) of star-forming galaxies in the redshift range 0.0 < z < 0.6 constructed from 4047 spectroscopic redshifts from the AGN and Galaxy Evolution Survey of 24 micron selected sources in the Bootes field of the NOAO Deep Wide-Field Survey. This sample provides the best available combination of large area (9 deg^2), depth, and statistically complete spectroscopic observations, allowing us to probe the evolution of the 24 micron LF of galaxies at low and intermediate redshifts while minimizing the effects of cosmic variance. In order to use the observed 24 micron luminosity as a tracer for star formation, active galactic nuclei (AGNs) that could contribute significantly at 24 micron are identified and excluded from our star-forming galaxy sample based on their mid-IR spectral energy distributions or the detection of X-ray emission. The evolution of the 24 micron LF of star-forming galaxies for redshifts of z < 0.65 is consistent with a pure luminosity evolution where the characteristic 24 micron luminosity evolves as (1+z)^(3.8+/-0.3). We extend our evolutionary study to encompass 0.0 < z < 1.2 by combining our data with that of the Far-Infrared Deep Extragalactic Legacy Survey. Over this entire redshift range the evolution of the characteristic 24 micron luminosity is described by a slightly shallower power law of (1+z)^(3.4+/-0.2). We find a local star formation rate density of (1.09+/-0.21) x 10^-2 Msun/yr/Mpc^-3, and that it evolves as (1+z)^(3.5+/-0.2) over 0.0 < z < 1.2. These estimates are in good agreement with the rates using optical and UV fluxes corrected for the effects of intrinsic extinction in the observed sources. This agreement confirms that star formation at z <~ 1.2 is robustly traced by 24 micron observations and that it largely occurs in obscured regions of galaxies. (Abridged)Comment: ApJ, in press, 16 pages 9 figure
    corecore