32 research outputs found

    Air-to-Air Heat and Moisture Recovery in a Plate-Frame Exchanger Using Composite and Asymmetric Membranes

    No full text
    The present work studied an air-to-air exchanger comprising a flat plate module with a diagonal channel and a counterflow configuration for the air streams. The objective of this study was to remove moisture and sensible heat from an exhaust air stream by indirect contact with another air stream. The temperature and flow rate of the exhaust air was in the range of 40–80 °C and 1–5 L·min−1, respectively, and the fresh ambient air to exhaust air flow ratio was 1–5. An asymmetric porous membrane (P-MEM), a thin film composite membrane (C-MEM), and a kraft paper were used as the core for the heat exchange module. The most influential parameter was the humid air temperature, with a direct positive effect (50–60%) due to the increase in the kinetic energy of the water molecules. The other effective parameter was the flow rate of the humid gas with a reverse effect on the enthalpy exchanger performance (25–37%). The ratio of “fresh” air to “exhaust” air had the lowest positive effect (8–10%) on the total effectiveness. The sensible effectiveness of different membranes under the studied conditions was relatively the same, showing their similar heat conductivity. However, the kraft paper showed the best performance compared to the synthetic membranes due to having a porous/hydrophile texture. P-MEM with an asymmetric porous texture showed the closest performance to kraft paper. Furthermore, it was found that under limited conditions, such as higher temperatures (70 and 80 °C) and flow rates (5 L·min−1) for the humid air, the performance of P-MEM was a little better than the kraft paper. However, C-MEM with the lowest total effectiveness and overall heat transfer coefficient (150–210 W·m−2·K−1) showed that the hydrophile PEBAX layer could not contribute to moisture recovery due to its high thickness

    Textural, surface, thermal and sorption properties of the functionalized activated carbons and carbon nanotubes

    No full text
    Two series of functionalised carbonaceous adsorbents were prepared by means of oxidation and nitrogenation of commercially available activated carbon and multi-walled carbon nanotubes. The effect of nitrogen and oxygen incorporation on the textural, surface, thermal and sorption properties of the adsorbents prepared was tested. The materials were characterized by elemental analysis, low-temperature nitrogen sorption, thermogravimetric study and determination of the surface oxygen groups content. Sorptive properties of the materials obtained were characterized by the adsorption of methylene and alkali blue 6B as well as copper(II) ions. The final products were nitrogen- and oxygen-enriched mesoporous adsorbents of medium-developed surface area, showing highly diverse N and O-heteroatom contents and acidic-basic character of the surface. The results obtained in our study have proved that through a suitable choice of the modification procedure of commercial adsorbents it is possible to produce materials with high sorption capacity towards organic dyes as well as copper(II) ions
    corecore