54 research outputs found

    Actividad antibacteriana de constituyentes no volátiles de Rosmarinus officinalis contra 37 aislamientos clínicos de bacterias multirresistentes

    Get PDF
    In this paper we investigated the antibacterial activity of a methanolic extract of Rosmarinus officinalis L. and their main constituents, carnosic acid and rosmarinic acid, against 37 nosocomial strains of multidrug-resistant bacteria. Results obtained showed that both the rosemary extract and carnosic acid inhibited all clinical isolates of Staphylococcus aureus methicillin-resistant and Enterococcus faecalis gentamicin and streptomycin-resistant bacteria examined (MICs 60 μg/mL vs. 200 μg/mL, respectively). Rosemary extract showed MIC values between 400 and 1600 μg/ml against the Gram-negative multidrug-resistant bacteria: Escherichia coli, Proteus mirabilis, Enterobacter cloacae, Pseudomonas aeruginosa, Morganella morganii and Providencia stuartii, while carnosic acid showed MIC of 120 to 240 μg/mL. Bactericidal effect of carnosic acid against S. aureus and E. faecalis was observed at their MIC value, while 2 x MIC to 4 x MIC were needed to kill Gram-negative bacteria. Rosmarinic acid showed a narrow spectrum of action against a few Gram-negative clinical isolates. Our findings suggest that carnosic acid would be a good lead candidate useful in counteracting drug-resistant infections.En este trabajo evaluamos la actividad antibacteriana de un extracto metanólico de Rosmarinus officinalis L. y sus principales componentes el ácido carnósico y ácido rosmarínico, contra 37 cepas de bacterias multirresistentes nosocomiales. Los resultados muestran que el extracto de romero y el ácido carnósico, inhibieron las bacterias Gram-positivas Staphylococcus aureus resistentes a meticilina y Enterococcus faecalis resistentes a gentamicina y estreptomicina (CIM 200 μg/mL y 60 μg/mL, respectivamente). El extracto de romero inhibió los Gram negativos multirresistentes: Escherichia coli, Proteus mirabilis, Enterobacter cloacae, Pseudomonas aeruginosa, Morganella morganii y Providencia stuartii (CIM 400 a 1600 μg/mL), mientras que el ácido carnósico mostró valores de CIM entre 120 a 240 μg/mL. El ácido carnósico mostró actividad bactericida contra S. aureus y E. faecalis a su CIM, mientras que 2 a 4 X CIM se requirieron para matar las bacterias Gram-negativas. El ácido rosmarínico mostró inhibió unos pocos aislados clínicos Gram-negativos. Estos hallazgos sugieren que el ácido carnósico puede ser de utilidad contra infecciones bacterianas multirresistentes a antibióticos.Fil: Zampini, Iris Catiana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán. Instituto de Quimica del Noroeste; Argentina. Universidad Nacional de Tucumán; ArgentinaFil: Arias, Myriam E.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán. Instituto de Quimica del Noroeste; Argentina. Universidad Nacional de Tucumán; ArgentinaFil: Cudmani, Norma. Hospital de Clinicas "Dr. Nicolas Avellaneda", Tucuman; ArgentinaFil: Ordóñez, Roxana Mabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán. Instituto de Quimica del Noroeste; Argentina. Universidad Nacional de Tucumán; ArgentinaFil: Isla, Maria Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán. Instituto de Quimica del Noroeste; Argentina. Universidad Nacional de Tucumán; ArgentinaFil: Moreno, Silvia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentin

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Novel genetic loci underlying human intracranial volume identified through genome-wide association

    Get PDF
    Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five novel loci for intracranial volume and confirmed two known signals. Four of the loci are also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (ρgenetic=0.748), which indicated a similar genetic background and allowed for the identification of four additional loci through meta-analysis (Ncombined = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, Parkinson’s disease, and enriched near genes involved in growth pathways including PI3K–AKT signaling. These findings identify biological underpinnings of intracranial volume and provide genetic support for theories on brain reserve and brain overgrowth

    Genetic architecture of subcortical brain structures in 38,851 individuals

    Get PDF
    Subcortical brain structures are integral to motion, consciousness, emotions and learning. We identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus, using genome-wide association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank. We show that variability in subcortical volumes is heritable, and identify 48 significantly associated loci (40 novel at the time of analysis). Annotation of these loci by utilizing gene expression, methylation and neuropathological data identified 199 genes putatively implicated in neurodevelopment, synaptic signaling, axonal transport, apoptosis, inflammation/infection and susceptibility to neurological disorders. This set of genes is significantly enriched for Drosophila orthologs associated with neurodevelopmental phenotypes, suggesting evolutionarily conserved mechanisms. Our findings uncover novel biology and potential drug targets underlying brain development and disease

    Genetic architecture of subcortical brain structures in 38,851 individuals

    Get PDF
    Subcortical brain structures are integral to motion, consciousness, emotions and learning. We identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus, using genome-wide association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank. We show that variability in subcortical volumes is heritable, and identify 48 significantly associated loci (40 novel at the time of analysis). Annotation of these loci by utilizing gene expression, methylation and neuropathological data identified 199 genes putatively implicated in neurodevelopment, synaptic signaling, axonal transport, apoptosis, inflammation/infection and susceptibility to neurological disorders. This set of genes is significantly enriched for Drosophila orthologs associated with neurodevelopmental phenotypes, suggesting evolutionarily conserved mechanisms. Our findings uncover novel biology and potential drug targets underlying brain development and disease

    Novel genetic loci associated with hippocampal volume

    Get PDF
    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder
    corecore