20 research outputs found

    The cost of additive manufacturing: machine productivity, economies of scale and technology-push

    No full text
    As part of the cosmos of digital fabrication technology, Additive Manufacturing (AM) systems are able to manufacture three-dimensional components and products directly from raw material and 3D design data. The layer-by-layer operating process of these systems does not require the use of tools, moulds or dies. Technology observers speculate that AM will have a profound economic impact on the manufacturing sector and indeed on wider society. By constructing a model of production cost for two different AM systems used commercially for the manufacture of end-use metal parts, Electron Beam Melting (EBM) and Direct Metal Laser Sintering (DMLS), this paper performs an inter-process comparison of cost performance. High specific costs, measured at ÂŁ2.39 and ÂŁ6.18 per cm3 of material deposited respectively, are identified as a central impediment to more widespread technology adoption of such additive systems. The research demonstrates differing levels of system productivity, suggesting that the observed deposition rates are not sufficient for the adoption of EBM and DMLS in high volume manufacturing applications. Despite the absence of amortisable tooling costs, the analysis also reveals that economies of scale are achievable in AM. The results reached are further discussed in the light of the varying strategic requirements posed by the market-pull and technology-push modes of innovation which are both found in the AM industry
    corecore