16 research outputs found

    Experimental Verification of a Predicted Intronic MicroRNA in Human NGFR Gene with a Potential Pro-Apoptotic Function

    Get PDF
    Neurotrophins (NTs) are a family of secreted growth factor proteins primarily involved in the regulation of survival and appropriate development of neural cells, functioning by binding to their specific (TrkA, TtkB, and TrkC) and/or common NGFR receptor. NGFR is the common receptor of NTs, binding with low-affinity to all members of the family. Among different functions assigned to NGFR, it is also involved in apoptosis induction and tumorigenesis processes. Interestingly, some of the functions of NGFR appear to be ligand-independent, suggesting a probable involvement of non-coding RNA residing within the sequence of the gene. Here, we are reporting the existence of a conserved putative microRNA, named Hsa-mir-6165 [EBI accession#: FR873488]. Transfection of a DNA segment corresponding to the pre-mir-6165 sequence in Hela cell line caused the generation of mature exogenous mir-6165 (a ∌200,000 fold overexpression). Furthermore, using specific primers, we succeeded to detect the endogenous expression of mir-6165 in several glioma cell lines and glioma primary tumors known to express NGFR. Similar to the pro-apoptotic role of NGFR in some cell types, overexpression of pre-mir-6165 in U87 cell line resulted in an elevated rate of apoptosis. Moreover, coordinated with the increased level of mir-6165 in the transfected U87 cell line, two of its predicted target genes (Pkd1 and DAGLA) were significantly down-regulated. The latter findings suggest that some of the previously attributed functions of NGFR could be explained indirectly by co-transcription of mir-6165 in the cells

    Molluscicidal effect of Euphorbia umbellata (Pax) Bruyns latex on Biomphalaria glabrata, Schistosoma mansoni host snail

    Get PDF
    ABSTRACT Euphorbia umbellata (Pax) Bruyns is an easily cultivated shrub, with occurrence in the tropical regions of the American and African continents. Chemical studies have revealed that the latex of this plant is rich in terpene compounds, which are highly toxic to snails Biomphalaria glabrata (Basommatophora: Planorbidae). The aim of this study was to evaluate the chemical composition and molluscicidal activity of the latex produced by E. umbellata, as well as the safety of its application in aquatic environments. The concentration of latex that killed 90% of the exposed snails after 24 h exposure (LC90) was 3.69 mg/L. Toxicity bioassays using Danio rerio (zebrafish) revealed that these animals were less susceptible to latex than planorbids. However, it is important to perform other toxicity tests to ensure the feasibility of using latex to control populations of mollusks that contribute to schistosomiasis transmission. A phytochemical screening performed with the E. umbellata latex identified the triterpenoid and coumarin class. Further studies are warranted to isolate, identify, and test the active compounds of E. umbellata latex in B. glabrata

    Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    Get PDF
    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field

    MicroRNA‐34a activation in tuberous sclerosis complex during early brain development may lead to impaired corticogenesis

    No full text
    Aims: Tuberous sclerosis complex (TSC) is a genetic disorder associated with dysregulation of the mechanistic target of rapamycin complex 1 (mTORC1) signalling pathway. Neurodevelopmental disorders, frequently present in TSC, are linked to cortical tubers in the brain. We previously reported microRNA-34a (miR-34a) among the most upregulated miRs in tubers. Here, we characterised miR-34a expression in tubers with the focus on the early brain development and assessed the regulation of mTORC1 pathway and corticogenesis by miR-34a. Methods: We analysed the expression of miR-34a in resected cortical tubers (n = 37) compared with autopsy-derived control tissue (n = 27). The effect of miR-34a overexpression on corticogenesis was assessed in mice at E18. The regulation of the mTORC1 pathway and the expression of the bioinformatically predicted target genes were assessed in primary astrocyte cultures from three patients with TSC and in SH-SY5Y cells following miR-34a transfection. Results: The peak of miR-34a overexpression in tubers was observed during infancy, concomitant with the presence of pathological markers, particularly in giant cells and dysmorphic neurons. miR-34a was also strongly expressed in foetal TSC cortex. Overexpression of miR-34a in mouse embryos decreased the percentage of cells migrated to the cortical plate. The transfection of miR-34a mimic in TSC astrocytes negatively regulated mTORC1 and decreased the expression of the target genes RAS related (RRAS) and NOTCH1. Conclusions: MicroRNA-34a is most highly overexpressed in tubers during foetal and early postnatal brain development. miR-34a can negatively regulate mTORC1; however, it may also contribute to abnormal corticogenesis in TSC
    corecore