11 research outputs found

    Avaluació d'un programa d'acompanyament psicosocial a pares i mares divorciats amb menors al càrrec

    Get PDF
    Lexpsico, un programa d'acompanyament psicosocial a progenitors divorciats amb menors al càrrec, iniciat per un equip interdisciplinari, neix responent a la necessitat d'eliminar o disminuir el maltractament silenciat sofert pels menors en una separació conflictiva reeducant i conscienciant dels seus progenitors. L'objectiu del treball és l'avaluació dels dos primers tallers de Lexpisco. Mitjançant l'anàlisi qualitatiu de les entrevistes semiestructurades als beneficiaris indirectes i a les professionals; entrevistes estructurades als beneficiaris directes així com observació participativa i utilitzant el model participatiu s'han analitzat diferents aspectes: la pertinença del programa, la seva eficàcia, l'impacte que té en els participants i la participació d'aquests durant el taller

    Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs

    Get PDF
    Bioprinting is a promising tool to fabricate well-organized cell-laden constructs for repair and regener- ation of articular cartilage. The selection of a suitable bioink, in terms of composition and mechanical properties, is crucial for the development of viable cartilage substitutes. In this study, we focused on the use of one of the main cartilage components, hyaluronic acid (HA), to design and formulate a new bioink for cartilage tissue 3D bioprinting. Major characteristics required for this application such as printabil- ity, biocompatibility, and biodegradability were analyzed. To produce cartilage constructs with optimal mechanical properties, HA-based bioink was co-printed with polylactic acid (PLA). HA-based bioink was found to improve cell functionality by an increase in the expression of chondrogenic gene markers and specific matrix deposition and, therefore, tissue formation. These results indicate that it is a promising bioink candidate for cartilage tissue engineering based in 3D bioprinting.This work was partially supported by MINECO MAT2016-78778-R and PCIN-2015-051 projects (Spain), European Regional Development Fund (ERDF), by the Consejería de Economía, Conocimiento, Empresas y Universidad de la Junta de Andalucía and European Regional Development Fund (ERDF), ref. SOMM17/6109/UGR and by the Ministerio de Economía, Industria y Competitividad ( FEDER funds, project RTC-2016-5451-1 ) (to JA.M and P.G-M)

    Altimetry for the future: Building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the ‘‘Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion

    Altimetry for the future: building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the “Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion

    Development of new biomimetic bioinks useful in 3D bioprinting of cartilage tissue

    Get PDF
    Articular cartilage is a tissue with important functions in preserving and enabling locomotion. However, it has limited intrinsic repair capacity when is damaged, which requires medical intervention. Conventional treatments for cartilage regeneration are not successful enough to repair articular cartilage defects. In the search of alternatives, bioprinting technology approaches are being explored as a promising solution, allowing the fabrication of viable cartilage substitutes by controlled deposition of cells and biomaterials that mimic the native tissue. For this, the selection of a suitable bioink (cell- carrier material), in terms of biological and mechanical properties, is crucial. Among biomaterials, natural polysaccharides are one of the most attractive, due to structural similarities and high-water retention, that resemble native environment of cartilage. Another approach that has been recently explored is the use of decellularized extracellular matrix derived from tissue (tdECM), which provides unique biochemical cues and microenvironment. However, it entails some issues such as limited donor tissue availability, morbidity or immunogenicity. As alternative source, cell culture is gaining a lot of attention especially with mesenchymal stem cells (MSCs), as these allows to generate easily biomimetic matrices, overcoming limitations that entail extracellular matrix (ECM) derived from tissue. The first objective of our study was to develop a new biomimetic bioink based on natural biomaterials, such as hyaluronic acid (HA), a main cartilage component, and alginate, which also provides suitable mechanical properties for cartilage tissue 3D bioprinting. The analysis of the main characteristics required for this application revealed an appropriate printability, jellying abilities, stiffness and degradability of this natural biomimetic bioink. In addition, biological assays demonstrated the positive effect of HA, improving the ability of chondrocytes to proliferate and produce ECM components, collagen type II and glycosaminoglycans (GAGs). The analysis of gene expression also indicated that it facilitates phenotype maintenance for long-term culture, increasing the expression of mature chondrocyte genes (collagen type II, aggrecan and Sox9) and reducing non-specific genes, such as fibrotic (Collagen type I) and hypertrophic (Collagen X) markers. The second objective was to develop a biomimetic bioink that better resembles chondrogenic environment based on decellularized ECM derived from MSCs in culture (dECM). In this attempt, we first were able to generate a matrix with a composition similar to that in early-step chondrogenic process, proving elements necessaries for tissue development not present in mature cartilaginous ECM. After its effective decellularization, demonstrated by maximal cellular removal and minimal matrix subtraction, it was possible to formulate a bioink with suitable properties to be applied in 3D bioprinting, such as shear thinning behavior, good shear recovery and gelling abilities. In addition to mechanical properties, its biocompatibility and bioactive properties were also demonstrated. We could evidence, by gene expression and histological assays, that this novel biomimetic bioink, at different concentrations, was capable to induce chondrogenesis of MSCs and cartilage tissue formation both in vitro e in vivo. Summarizing, here we present a robust and extensive study in which two different biomimetic bioinks suitable for cartilage 3D bioprinting were developed, demonstrating their biological and mechanical properties in vitro e in vivo, and encouraging its future application in the clinical arena.El cartílago articular es un tejido con funciones importantes en la preservación y ejecución de la locomoción. No obstante, tiene una capacidad de reparación intrínseca limitada cuando éste se daña, que requiere intervención médica. Los tratamientos convencionales para la regeneración del cartílago no son suficientemente efectivas para reparar los defectos del cartílago articular. En la búsqueda de alternativas, la tecnología de bioimpresión se está considerando una opción prometedora, puesto que permite la fabricación de sustitutos viables de cartílago mediante la deposición controlada de células y biomateriales, que imitan el tejido nativo. Para ello, la selección de una biotinta (material portador de células) adecuada, en términos biológicos y mecánicos, es crucial. Entre los biomateriales disponibles actualmente, los polisacáridos naturales son uno de los más atractivos, debido a sus características estructurales y a su alta capacidad de retención de agua que permiten proporcionar un ambiente semejante al del cartílago nativo. Otro posibilidad que se ha explorado recientemente es el uso de la matriz extracelular descelularizada derivada de tejido (tdECM), capaz de proporcionar unas señales bioquímicas y un microambiente únicos. Sin embargo, conlleva algunos problemas, como la disponibilidad limitada de tejido donante, la morbilidad o la inmunogenicidad. Como fuente alternativa, el cultivo celular está recibiendo una gran atención, especialmente de las Células Madre Mesenquimales (MSCs), ya que éstas permiten generar fácilmente matrices biomiméticas, sin presentar las limitaciones que supone la matriz derivada de los tejidos. El primer objetivo de nuestro estudio fue desarrollar una nieva biotinta biomimética basada en biomateriales naturales, como el ácido hialurónico (HA), uno de los principales componentes del cartílago, y el alginato, que además proporciona una propiedades mecánicas adecuadas para la bioimpresión 3D. El análisis de las características principales requeridas para dicha aplicación determinó que esta biotinta bimimética poseía una adecuada printabilidad, capacidad de gelificación, rigidez y degradabilidad. Además, los ensayos biológicos evidenciaron el efecto positivo de HA, el cual mejoró la capacidad de los condrocitos para proliferar y producir componentes de la matriz extracelular, colágeno tipo II y glucosaminoglicanos. El análisis de la expresión génica también indicó una mejora en el mantenimiento del fenotipo para el cultivo a largo plazo, aumentando la expresión de los marcadores específicos de condrocitos maduros (colágeno tipo II, agrecano y Sox9) y reduciendo los no específicos de cartílago hialino, como el marcador fibrótico (colágeno tipo I) y el hipertrófico (Colágeno X). El segundo objetivo fue desarrollar una biotinta biomimética que asemejara mejor el ambiente condrogénico, a partir de matriz derivada de MSCs en cultivo. Para ello, primero se generó una matriz con una composición similar a la establecida durante el proceso condrogénico embrionario, conteniendo los elementos necesarios para el desarrollo del tejido y que no están presentes en la matriz cartilaginosa madura. Después de su efectiva descelularización, demostrada por la eliminación máxima de contenido celular y la sustracción mínima de la matriz, fue posible formular un biotinta con propiedades adecuadas para su aplicación en la bioimpresión 3D, como viscoelasticidad, gran capacidad de recuperación y de gelificación. Además de las propiedades mecánicas, también se demostró su biocompatibilidad y propiedades bioactivas. Mediante el análisis de expresión génica e histológicos se determinó que esta nueva biotinta biomimética, a diferentes concentraciones, fue capaz de inducir la condrogénesis de MSCs y la formación de tejido de cartílago, tanto in vitro como in vivo. En resumen, aquí presentamos un estudio robusto y extenso en el que se desarrollaron dos bioenlaces biomiméticos diferentes adecuados para la bioimpresión 3D de cartílago, demostrando sus propiedades biológicas y mecánicas in vitro e in vivo, y alentamos su futura aplicación en el ámbito clínico.Tesis Univ. Granada

    La frontera, la ferida: pensaments, paraules i imatges per a un espai encara per pensar

    No full text
    Cinquena i última conferència del cicle 'Pirineus, frontera i refugi' a càrrec del professor Xavier Antich i Valero sobre la noció de frontera i les ferides de frontera d'Europa. La conferència ha comptat amb la lectura de textos breus, de literatura testimonial i reflexió filosòfica, a càrrec de l'actriu Cristina Carrasc

    Development of a Biomimetic Hydrogel Based on Predifferentiated Mesenchymal Stem-Cell-Derived ECM for Cartilage Tissue Engineering

    Get PDF
    The use of decellularized extracellular matrix (dECM) as a biomaterial has been an important step forward for the development of functional tissue constructs. In addition to tissues and organs, cell cultures are gaining a lot of attention as an alternative source of dECM. In this work, a novel biomimetic hydrogel is developed based on dECM obtained from mesenchymal stem cells (mdECM) for cartilage tissue engineering. To this end, cells are seeded under specific culture conditions to generate an early chondrogenic extracellular matrix (ECM) providing cues and elements necessary for cartilage development. The composition is determined by quantitative, histological, and mass spectrometry techniques. Moreover, the decellularization process is evaluated by measuring the DNA content and compositional analyses, and the hydrogel is formulated at different concentrations (3% and 6% w/v). Results show that mdECM derived hydrogels possess excellent biocompatibility and suitable physicochemical and mechanical properties for their injectability. Furthermore, it is evidenced that this hydrogel is able to induce chondrogenesis of mesenchymal stem cells (MSCs) without supplemental factors and, furthermore, to form hyaline cartilage-like tissue after in vivo implantation. These findings demonstrate for the first time the potential of this hydrogel based on mdECM for applications in cartilage repair and regeneration.Spanish Ministry of Education, Culture and Sports BOE-A-2014-13539Ministerio de Economía, Industria y Competitividad (ERDF funds) RTC-2016-5451-1Instituto de Salud Carlos III FMM-AP17196-2019Consejería de Economía, Conocimiento, Empresas y Universidad de la Junta de Andalucía (ERDF funds) B-CTS-230-UGR18 PY18-2470 SOMM17-6109 P18-FR-2465Instituto de Salud Carlos III, ERDF funds DTS19/0014

    High-Resolution Strain Measurement for Biomechanical Parameters Assessment in Native and Decellularized Porcine Vessels

    Get PDF
    Decellularized vascular scaffolds are promising materials for vessel replacements. However, despite the natural origin of decellularized vessels, issues such as biomechanical incompatibility, immunogenicity risks, and the hazards of thrombus formation still need to be addressed. In this study, we assess the mechanical properties of two groups of porcine carotid blood vessels: (i) native arteries and (ii) decellularized arteries. The biomechanical properties of both groups (n = 10, sample size of each group) are determined by conducting uniaxial and circumferential tensile tests by using an ad hoc and lab-made device comprising a peristaltic pump that controls the load applied to the sample. This load is regularly incremented (8 grams per cycle with a pause of 20 seconds after each step) while keeping the vessels continuously hydrated. The strain is measured by an image cross-correlation technique applied on a high-resolution video. The mechanical testing analyses of the arteries revealed significant differences in burst pressure between the native (1345.08±96.58 mbar) and decellularized (1067.79±112.13 mbar) groups. Moreover, decellularized samples show a significantly lower maximum load at failure (15.78±0.79 N) in comparison with native vessels (19.42±0.80 N). Finally, the average ultimate circumferential tensile also changes between native (3.71±0.37 MPa) and decellularized (2.93±0.18 MPa) groups. This technique is able to measure the strain in the regime of large displacements and enables high-resolution image of the local strains, thus providing a valuable tool for characterizing several biomechanical parameters of the vessels also applicable to other soft tissue presenting hyperelastic behaviours

    Validation of the 1,4-butanediol thermoplastic polyurethane as a novel material for 3D bioprinting applications

    No full text
    Tissue engineering (TE) seeks to fabricate implants that mimic the mechanical strength, structure, and composition of native tissues. Cartilage TE requires the development of functional personalized implants with cartilage-like mechanical properties capable of sustaining high load-bearing environments to integrate into the surrounding tissue of the cartilage defect. In this study, we evaluated the novel 1,4-butanediol thermoplastic polyurethane elastomer (b-TPUe) derivative filament as a 3D bioprinting material with application in cartilage TE. The mechanical behavior of b-TPUe in terms of friction and elasticity were examined and compared with human articular cartilage, PCL, and PLA. Moreover, infrapatellar fat pad-derived human mesenchymal stem cells (MSCs) were bioprinted together with scaffolds. in vitro cytotoxicity, proliferative potential, cell viability, and chondrogenic differentiation were analyzed by Alamar blue assay, SEM, confocal microscopy, and RT-qPCR. Moreover, in vivo biocompatibility and host integration were analyzed. b-TPUe demonstrated a much closer compression and shear behavior to native cartilage than PCL and PLA, as well as closer tribological properties to cartilage. Moreover, b-TPUe bioprinted scaffolds were able to maintain proper proliferative potential, cell viability, and supported MSCs chondrogenesis. Finally, in vivo studies revealed no toxic effects 21 days after scaffolds implantation, extracellular matrix deposition and integration within the surrounding tissue. This is the first study that validates the biocompatibility of b-TPUe for 3D bioprinting. Our findings indicate that this biomaterial can be exploited for the automated biofabrication of artificial tissues with tailorable mechanical properties including the great potential for cartilage TE applications.Consejería de Economía, Innovación, Empresas y Universidad de la Junta de Andalucía SOMM17/6109/UGREuropean Union (EU) SOMM17/6109/UGRMinisterio de Economía, Industria y Competitividad. Gobierno de España MAT 2016-78778-R PCIN-2015-051Instituto de Salud Carlos III FMM-AP17196-201
    corecore