14 research outputs found

    Techno-economic and environmental comparison between battery and fuel cell electric vehicles

    Get PDF
    This research presents a techno-economic and environmental comparison between battery electric vehicles and fuel cell electric vehicles that automakers can consider when defining business strategies. The results indicate that there are some limiting factors that might hinder the market penetration of these technologies due to material resources scarcity and limited power generation capacity. Newer business models are expected to change the automotive market. Mobility as a service and connected autonomous vehicles are likely to change the value proposition offered by automakers and it will make more difficult to deliver differentiating factors. Reliability of both technologies is excellent but faster refuelling time of FCEV offers a differentiation factor that could be most appreciated by commercial fleets’ operators. Average BEV cost double than FCEV but the cost differential is narrowing down fast. Range anxiety is one of the main concerns for BEV customers; however, with current 60 kWh batteries, range is enough for most users most of times. The way of financing the procurement of electric vehicles can make a difference in the selection of the technology. Automakers, must combine financing approaches, strategies of differentiation and specific value propositions depending on whether the vehicles are sold to private or corporative clients

    The role of hydrogen and fuel cells in the global energy system

    Get PDF
    Hydrogen technologies have experienced cycles of excessive expectations followed by disillusion. Nonetheless, a growing body of evidence suggests these technologies form an attractive option for the deep decarb onisation of global energy systems, and that recent improvements in their cost and performance point towards economic viability as well. This paper is a comprehensive review of the potential role that hydrogen could play in the provision of electricity, h eat, industry, transport and energy storage in a low - carbon energy system, and an assessment of the status of hydrogen in being able to fulfil that potential. The picture that emerges is one of qualified promise: hydrogen is well established in certain nic hes such as forklift trucks, while mainstream applications are now forthcoming. Hydrogen vehicles are available commercially in several countries, and 225,000 fuel cell home heating systems have been sold. This represents a step change from the situation of only five years ago. This review shows that challenges around cost and performance remain, and considerable improvements are still required for hydrogen to become truly competitive. But such competitiveness in the medium - term future no longer seems an unrealistic prospect, which fully justifies the growing interest and policy support for these technologies around the world

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Selecting low carbon technologies for heavy goods vehicles: a case study in the UK fast food supply chain

    No full text
    The fast food supply chain is facing increased operating costs due to rising food and energy prices. Based on a case study of a major fast food logistics operator, this paper uses a metaheuristic evolutionary algorithm to find the optimal combination of low carbon vehicle, powertrain and transport refrigeration technologies that minimise net present costs for a heterogeneous fleet of heavy goods vehicles operating in the chilled and frozen food sector. Based on the financial and operational constraints of the live case study, the model suggests that rigid trucks should include spray reduction mud-flaps, new generation single-wide tyres, light weighting materials and flywheels. Depending on the duty cycle and fuel used, other additional technologies can further enhance the net present savings. Conventional diesel vehicles can reduce their net present costs by 10.25% and 11.43% in urban and regional duty cycles.The model suggested that alternative refrigeration technologies had less potential for reducing costs unless working more than 10 hours per day; however they could make a considerable contribution to lower carbon emissions. As fast food logistic operators have access to used cooking oil, they can buy cheaper biodiesel while reducing GHG emissions by up to 84%. When comparing a conventional powered rigid truck using DERV with one using B65, cost savings were estimated to be £32,000 for urban duty cycles and over £42,000 for regional duty cycles per truck over their 5 year lifespans, reducing their CO2 by 231 and 273 tonnes respectively

    Selection of low carbon technologies for heavy goods vehicles

    No full text
    Profit margins in logistics are very tight and reducing fuel costs is critical to remain competitive. Customers and policy makers are becoming more sensitive towards climate change due to the links between fossil fuels and global warming. This research presents a framework to help decision makers to select the optimal heavy goods vehicles’ specification that minimises their carbon emissions cost-efficiently given their aversion to risk.The framework developed, uses a broad range of methodologies, techniques and tools including carbon emission lifecycle analysis; simulations; live trials; statistical analysis; metaheuristics and multicriteria decision analysis. An assessment of the waste-to-fuel opportunities of quick service restaurants showed that these could cover around 5% of the energy needs of UK commercial fleets and it was found that used cooking oil could reduce diesel emissions by over 85%. Among the range of scenarios built, the solution recommended by the framework indicated that all vehicles should fit spray reduction mudflaps, low rolling resistance tyres, automatic tyre monitoring systems and lightweight materials. While urban HGVs should also have automatic manual transmissions, regional and long-haul HGVs should include aerodynamic trailers and predictive cruise control instead. Compared to the do-nothing scenarios, the net present costs of urban, regional and long-haul vehicles can be reduced by 3%, 9.4% and 10.7% and their GHG emissions by 7%, 14.6% and 17.1%, respectively. This results in savings between £2.7M to £4.4M and 7,950 to 8,262 t CO2 eq. for the whole fleet of the industrial sponsor over 5 years. The lowest cost solution could save £5.8M and 27,684 t CO2 while carbon minimisation one could save over 30,000 tonnes and £2.9M, with current energy prices. The results suggest that diesel technology HGVs can still play a role in the decarbonisation of road haulage and that the uptake of low carbon technologies is highly influence by the risks aversion of the decision maker and duty cycle. The results demonstrate that the EU 2020 targets of delivering 10% savings from road transport by 2020 are perfectly feasible

    Selecting low carbon technologies for increasing the efficiency of heavy goods vehicle fleets using sim heuristics

    No full text
    Commercial Transportation of food for UK consumption represents around 9% of the GHGs emissions of the food chain and between 1.8% and 2.5% of all UK carbon emissions. Delivering sustainable freight is not only about reducing emissions but also doing so in a cost efficient manner. This paper proposes a sim-heuristics framework that can be used by Heavy Goods Vehicle (HGV) procurement decision makers to specify the right combination of Low Carbon Technologies that minimise the vehicle total cost of ownership. HGV manufacturers will find the approach also useful to tailor the configuration of their vehicles to the operating requirements of their customers. Policy makers also will find this framework useful as it can help them to identify the technologies with greater potential for specific sectors and focussing research and development efforts on these

    Waste-to-fuel opportunities for British quick service restaurants: a case study

    No full text
    The fast food supply chain is facing increasing operating costs due to volatile food and energy prices. Based on a case study of a major fast food logistics operator, this paper quantifies the potential for fuel generation from the waste generated by quick-service restaurants in Britain. Several fuel pathways and supply chains were mapped to understand the carbon intensity of the various waste-to-fuel opportunities, the number of heavy goods vehicles that might be powered and the key factors that could help companies make better informed decisions related to fuel generation from waste

    Hydrogen-fueled transportation as a measure for climate change mitigation: Social perspectives

    No full text
    Due to the technical requirements and diversity in business models, use cases, and organizational structures, hydrogen is perceived as a possible means for decarbonizing the freight sector. This chapter presents the qualitative research conducted in the United Kingdom with freight operators and wider stakeholders in order tounderstand stakeholders’ responses to the current interest in hydrogen and their perspectives on transitioning to hydrogen-fueled freight operations. It was found that despite freight operators efforts to learn about hydrogen technology, they remained in a wait-and-see position, which indicates low societal readiness levels for hydrogen-fueled freight. As such, involving stakeholders in the early stages of research and developmentis important for societal readiness, whereas stakeholder engagement through collaborative networks is critical to influence and ensure that hydrogen-fueled transport delivers social value for all
    corecore