74 research outputs found

    Reduction of nitrogen compounds in oceanic basement and its implications for HCN formation and abiotic organic synthesis

    Get PDF
    Hydrogen cyanide is an excellent organic reagent and is central to most of the reaction pathways leading to abiotic formation of simple organic compounds containing nitrogen, such as amino acids, purines and pyrimidines. Reduced carbon and nitrogen precursor compounds for the synthesis of HCN may be formed under off-axis hydrothermal conditions in oceanic lithosphere in the presence of native Fe and Ni and are adsorbed on authigenic layer silicates and zeolites. The native metals as well as the molecular hydrogen reducing CO2 to CO/CH4 and NO3-/NO2- to NH3/NH4+ are a result of serpentinization of mafic rocks. Oceanic plates are conveyor belts of reduced carbon and nitrogen compounds from the off-axis hydrothermal environments to the subduction zones, where compaction, dehydration, desiccation and diagenetic reactions affect the organic precursors. CO/CH4 and NH3/NH4+ in fluids distilled out of layer silicates and zeolites in the subducting plate at an early stage of subduction will react upon heating and form HCN, which is then available for further organic reactions to, for instance, carbohydrates, nucleosides or even nucleotides, under alkaline conditions in hydrated mantle rocks of the overriding plate. Convergent margins in the initial phase of subduction must, therefore, be considered the most potent sites for prebiotic reactions on Earth. This means that origin of life processes are, perhaps, only possible on planets where some kind of plate tectonics occur

    Low‐temperature dunite hydration: evaluating CH4 and H2 production from H2O and CO2

    Get PDF
    Abiotic methane (CH4) and hydrogen (H2) produced after hydration of mafic/ultramafic rocks represent energy sources for microbes that may thrive in the deep subsurface regions of Earth and possibly on other planets. While H2 is a direct product of serpentinization, CH4 can form via Fischer–Tropsch Type (FTT) reactions (carbon reduction) that, due to potential H2 migration, can be spatially and temporally detached from serpentinization. We tested an alternative process hypothesized by some scholars, in which CO2 can be reduced through dunite hydration without initially added H2, implying that CH4 can form in the same serpentinized fluid–rock system. The experiment used natural dunite sand (Forsterite 92), CO2 with δ13C ~ −25‰ (VPDB), and a 1 mm dissolved SiO2 solution mixed in 30 glass bottles (118 mL) stored for up to 8 months at low temperature (50°C) to simulate land-based serpentinization systems. In addition, 30 control bottles without olivine were used as blanks. Trivial amounts of CH4 (orders of 0.2–0.9 ppmv) were detected in both samples and blanks, likely representing analytical noise; essentially, no significant amount of CH4 formed under the experimental conditions used in this work. Low amounts of H2 (~2.55 ± 1.39 ppmv) were generated, with production yields that were one order of magnitude lower than in previously published experiments. Moderate concentrations of SiO2 appeared to hinder low-temperature H2 production. Our experiment confirms that the low-temperature reduction of CO2 into CH4 through direct olivine hydration, without initial H2, is sluggish and not straightforward, which is consistent with previous studies. The presence of substantial amounts of H2, as well as suitable metal catalysts, appears to be essential in the low-temperature production of abiotic CH4, as observed in published FTT experiments

    Exceptional preservation of fungi as H2-bearing fluid inclusions in an Early Quaternary paleo-hydrothermal system at Cape Vani, Milos, Greece

    Get PDF
    The production of H2 in hydrothermal systems and subsurface settings is almost exclusively assumed a result of abiotic processes, particularly serpentinization of ultramafic rocks. The origin of H2 in environments not hosted in ultramafic rocks is, as a rule, unjustifiably linked to abiotic processes. Additionally, multiple microbiological processes among both prokaryotes and eukaryotes are known to involve H2-production, of which anaerobic fungi have been put forward as a potential source of H2 in subsurface environments, which is still unconfirmed. Here, we report fungal remains exceptionally preserved as fluid inclusions in hydrothermal quartz from feeder quartz-barite veins from the Cape Vani Fe-Ba-Mn ore on the Greek island of Milos. The inclusions possess filamentous or near-spheroidal morphologies interpreted as remains of fungal hyphae and spores, respectively. They were characterized by microthermometry, Raman spectroscopy, and staining of exposed inclusions with WGA-FITC under fluorescence microscopy. The spheroidal aqueous inclusions interpreted as fungal spores are unique by their coating of Mn-oxide birnessite, and gas phase H2. A biological origin of the H2 resulting from anaerobic fungal respiration is suggested. We propose that biologically produced H2 by micro-eukaryotes is an unrecognized source of H2 in hydrothermal systems that may support communities of H2-dependent prokaryote

    Determination of the microscopic mineralogy of inclusion in an amygdaloidal pillow basalt by fs-LIMS

    Get PDF
    We present chemical depth profiling studies on mineralogical inclusions embedded in amygdale calcium carbonate by our Laser Ablation Ionisation Mass Spectrometer designed for in situ space research. An IR femtosecond laser ablation is employed to generate ions that are recorded by a miniature time-of-flight mass spectrometer. The mass spectra were measured at several locations on the sample surface and yield chemical depth profiles along the depth length of about 30 mm. The presence of oxides and sulphides within inclusion material allows us to derive elemental abundance calibration factors (relative sensitivity coefficients, RSCs) for major and minor elements. These are obtained from the atomic intensity correlations performed on the depth profiling data. With the RSCs corrections the quantitative analysis of more complex mineralogical phases within the inclusion is conducted by correlating atomic abundance fractions in ternary diagrams, typically used in geology. The spatial resolution of the depth profiles was sufficient to study chemically distinct micrometre-sized objects, such as mineralogical grains and thin layers of minerals including micrometre-sized filamentous structures. The method presented here is well-suited for the quantitative chemical analyses of highly heterogeneous materials where the ablation condition can vary locally with the material composition making the application of standard reference materials less accurate. The presented method is developed to distinguish between abiotic and biological material while searching for micrometre-sized extinct or extent life forms on the surfaces of Solar System bodies

    Serpentinization: Connecting geochemistry, ancient metabolism and industrial hydrogenation

    Get PDF
    Rock–water–carbon interactions germane to serpentinization in hydrothermal vents have occurred for over 4 billion years, ever since there was liquid water on Earth. Serpentinization converts iron(II) containing minerals and water to magnetite (Fe3O4) plus H2. The hydrogen can generate native metals such as awaruite (Ni3Fe), a common serpentinization product. Awaruite catalyzes the synthesis of methane from H2 and CO2 under hydrothermal conditions. Native iron and nickel catalyze the synthesis of formate, methanol, acetate, and pyruvate—intermediates of the acetyl-CoA pathway, the most ancient pathway of CO2 fixation. Carbon monoxide dehydrogenase (CODH) is central to the pathway and employs Ni0 in its catalytic mechanism. CODH has been conserved during 4 billion years of evolution as a relic of the natural CO2-reducing catalyst at the onset of biochemistry. The carbide-containing active site of nitrogenase—the only enzyme on Earth that reduces N2—is probably also a relic, a biological reconstruction of the naturally occurring inorganic catalyst that generated primordial organic nitrogen. Serpentinization generates Fe3O4 and H2, the catalyst and reductant for industrial CO2 hydrogenation and for N2 reduction via the Haber–Bosch process. In both industrial processes, an Fe3O4 catalyst is matured via H2-dependent reduction to generate Fe5C2 and Fe2N respectively. Whether serpentinization entails similar catalyst maturation is not known. We suggest that at the onset of life, essential reactions leading to reduced carbon and reduced nitrogen occurred with catalysts that were synthesized during the serpentinization process, connecting the chemistry of life and Earth to industrial chemistry in unexpected ways

    Examination of an eHealth literacy scale and a health literacy scale in a population with moderate to high cardiovascular risk: Rasch analyses

    Get PDF
    IntroductionElectronic health (eHealth) strategies are evolving making it important to have valid scales to assess eHealth and health literacy. Item response theory methods, such as the Rasch measurement model, are increasingly used for the psychometric evaluation of scales. This paper aims to examine the internal construct validity of an eHealth and health literacy scale using Rasch analysis in a population with moderate to high cardiovascular disease risk.MethodsThe first 397 participants of the CONNECT study completed the electronic health Literacy Scale (eHEALS) and the Health Literacy Questionnaire (HLQ). Overall Rasch model fit as well as five key psychometric properties were analysed: unidimensionality, response thresh-olds, targeting, differential item functioning and internal consistency.ResultsThe eHEALS had good overall model fit (χ2 = 54.8, p = 0.06), ordered response thresholds, reasonable targeting and good internal consistency (person separation index (PSI) 0.90). It did, however, appear to measure two constructs of eHealth literacy. The HLQ subscales (except subscale 5) did not fit the Rasch model (χ2: 18.18–60.60, p: 0.00–0.58) and had sub-optimal targeting for most subscales. Subscales 6 to 9 displayed disordered thresholds indi-cating participants had difficulty distinguishing between response options. All subscales did, nonetheless, demonstrate moderate to good internal consistency (PSI: 0.62–0.82)

    Formation of H2 and CH4 by weathering of olivine at temperatures between 30 and 70°C

    Get PDF
    Hydrocarbons such as CH4 are known to be formed through the Fischer-Tropsch or Sabatier type reactions in hydrothermal systems usually at temperatures above 100°C. Weathering of olivine is sometimes suggested to account for abiotic formation of CH4 through its redox lowering and water splitting properties. Knowledge about the CH4 and H2 formation processes at low temperatures is important for the research about the origin and cause of early Earth and Martian CH4 and for CO2 sequestration. We have conducted a series of low temperature, long-term weathering experiments in which we have tested the CH4 and H2 formation potential of forsteritic olivine

    Nature of Cardiac Rehabilitation Around the Globe

    Get PDF
    BackgroundCardiac rehabilitation (CR) is a clinically-effective but complex model of care. The purpose of this study was to characterize the nature of CR programs around the world, in relation to guideline recommendations, and compare this by World Health Organization (WHO) region.MethodsIn this cross-sectional study, a piloted survey was administered online to CR programs globally. Cardiac associations and local champions facilitated program identification. Quality (benchmark of ≥ 75% of programs in a given country meeting each of 20 indicators) was ranked. Results were compared by WHO region using generalized linear mixed models.Findings111/203 (54.7%) countries in the world offer CR; data were collected in 93 (83.8%; N = 1082 surveys, 32.1% program response rate). The most commonly-accepted indications were: myocardial infarction (n = 832, 97.4%), percutaneous coronary intervention (n = 820, 96.1%; 0.10), and coronary artery bypass surgery (n = 817, 95.8%). Most programs were led by physicians (n = 680; 69.1%). The most common CR providers (mean = 5.9 ± 2.8/program) were: nurses (n = 816, 88.1%; low in Africa, p

    Cardiac Rehabilitation Availability and Density around the Globe

    Get PDF
    BackgroundDespite the epidemic of cardiovascular disease and the benefits of cardiac rehabilitation (CR), availability is known to be insufficient, although this is not quantified. This study ascertained CR availability, volumes and its drivers, and density.MethodsA survey was administered to CR programs globally. Cardiac associations and local champions facilitated program identification. Factors associated with volumes were assessed using generalized linear mixed models, and compared by World Health Organization region. Density (i.e. annual ischemic heart disease [IHD] incidence estimate from Global Burden of Disease study divided by national CR capacity) was computed.FindingsCR was available in 111/203 (54.7%) countries; data were collected in 93 (83.8% country response; N?=?1082 surveys, 32.1% program response rate). Availability by region ranged from 80.7% of countries in Europe, to 17.0% in Africa (p
    corecore