34 research outputs found

    Insight in Genome-Wide Association of Metabolite Quantitative Traits by Exome Sequence Analyses

    Get PDF
    Metabolite quantitative traits carry great promise for epidemiological studies, and their genetic background has been addressed using Genome-Wide Association Studies (GWAS). Thus far, the role of less common variants has not been exhaustively studied. Here, we set out a GWAS for metabolite quantitative traits in serum, followed by exome sequence analysis to zoom in on putative causal variants in the associated genes. 1H Nuclear Magnetic Resonance (1H-NMR) spectroscopy experiments yielded successful quantification of 42 unique metabolites in 2,482 individuals from The Erasmus Rucphen Family (ERF) study. Heritability of metabolites were estimated by SOLAR. GWAS was performed by linear mixed models, using HapMap imputations. Based on physical vicinity and pathway analyses, candidate genes were screened for coding region variation using exome sequence data. Heritability estimates for metabolites ranged between 10% and 52%. GWAS replicated three known loci in the metabolome wide significance: CPS1 with glycine (P-value  = 1.27×10−32), PRODH with proline (P-value  = 1.11×10−19), SLC16A9 with carnitine level (P-value  = 4.81×10−14) and uncovered a novel association between DMGDH and dimethyl-glycine (P-value  = 1.65×10−19) level. In addition, we found three novel, suggestively significant loci: TNP1 with pyruvate (P-value  = 1.26×10−8), KCNJ16 with 3-hydroxybutyrate (P-value  = 1.65×10−8) and 2p12 locus with valine (P-value  = 3.49×10−8). Exome sequence analysis identified potentially causal coding and regulatory variants located in the genes CPS1, KCNJ2 and PRODH, and revealed allelic heterogeneity for CPS1 and PRODH. Combined GWAS and exome analyses of metabolites detected by high-resolution 1H-NMR is a robust approach to uncover metabolite quantitative trait loci (mQTL), and the likely causative variants in these loci. It is anticipated that insight in the genetics of intermediate phenotypes will provide additional insight into the genetics of complex traits

    Gene co-expression analysis identifies brain regions and cell types involved in migraine pathophysiology

    Get PDF
    Migraine is a common disabling neurovascular brain disorder typically characterised by attacks of severe headache and associated with autonomic and neurological symptoms. Migraine is caused by an interplay of genetic and environmental factors. Genome-wide association studies (GWAS) have identified over a dozen genetic loci associated with migraine. Here, we integrated migraine GWAS data with high-resolution spatial gene expression data of normal adult brains from the Allen Human Brain Atlas to identify specific brain regions and molecular pathways that are possibly involved in migraine pathophysiology. To this end, we used two complementary methods. In GWAS data from 23,285 migraine cases and 95,425 controls, we first studied modules of co-expressed genes that were calculated based on human brain expression data for enrichment of genes that showed association with migraine. Enrichment of a migraine GWAS signal was found for five modules that suggest involvement in migraine pathophysiology of: (i) neurotransmission, protein catabolism and mitochondria in the cortex; (ii) transcription regulation in the cortex and cerebellum; and (iii) oligodendrocytes and mitochondria in subcortical areas. Second, we used the high-confidence genes from the migraine GWAS as a basis to construct local migraine-related co-expression gene networks. Signatures of all brain regions and pathways that were prominent in the first method also surfaced in the second method, thus providing support that these brain regions and pathways are indeed involved in migraine pathophysiology

    Migraine, inflammatory bowel disease and celiac disease:A Mendelian randomization study

    Get PDF
    Objective: To assess whether migraine may be genetically and/or causally associated with inflammatory bowel disease (IBD) or celiac disease. Background: Migraine has been linked to IBD and celiac disease in observational studies, but whether this link may be explained by a shared genetic basis or could be causal has not been established. The presence of a causal association could be clinically relevant, as treating one of these medical conditions might mitigate the symptoms of a causally linked condition. Methods:Linkage disequilibrium score regression and two-sample bidirectional Mendelian randomization analyses were performed using summary statistics from cohort-based genome-wide association studies of migraine (59,674 cases; 316,078 controls), IBD (25,042 cases; 34,915 controls) and celiac disease (11,812 or 4533 cases; 11,837 or 10,750 controls). Migraine with and without aura were analyzed separately, as were the two IBD subtypes Crohn's disease and ulcerative colitis. Positive control analyses and conventional Mendelian randomization sensitivity analyses were performed.Results: Migraine was not genetically correlated with IBD or celiac disease. No evidence was observed for IBD (odds ratio [OR] 1.00, 95% confidence interval [CI] 0.99–1.02, p = 0.703) or celiac disease (OR 1.00, 95% CI 0.99–1.02, p = 0.912) causing migraine or migraine causing either IBD (OR 1.08, 95% CI 0.96–1.22, p = 0.181) or celiac disease (OR 1.08, 95% CI 0.79–1.48, p = 0.614) when all participants with migraine were analyzed jointly. There was some indication of a causal association between celiac disease and migraine with aura (OR 1.04, 95% CI 1.00–1.08, p = 0.045), between celiac disease and migraine without aura (OR 0.95, 95% CI 0.92–0.99, p = 0.006), as well as between migraine without aura and ulcerative colitis (OR 1.15, 95% CI 1.02–1.29, p = 0.025). However, the results were not significant after multiple testing correction. Conclusions: We found no evidence of a shared genetic basis or of a causal association between migraine and either IBD or celiac disease, although we obtained some indications of causal associations with migraine subtypes.</p

    The structure of the tetrasialoganglioside from human brain

    Get PDF
    Autosomal dominant retinal vasculopathy with cerebral leukodystrophy is a microvascular endotheliopathy with middle- age onset. In nine families, we identified heterozygous C- terminal frameshift mutations in TREX1, which encodes a 3'-5' exonuclease. These truncated proteins retain exonuclease activity but lose normal perinuclear localization. These data have implications for the maintenance of vascular integrity in the degenerative cerebral microangiopathies leading to stroke and dementias

    Cerebral small vessel disease genomics and its implications across the lifespan

    Get PDF
    White matter hyperintensities (WMH) are the most common brain-imaging feature of cerebral small vessel disease (SVD), hypertension being the main known risk factor. Here, we identify 27 genome-wide loci for WMH-volume in a cohort of 50,970 older individuals, accounting for modification/confounding by hypertension. Aggregated WMH risk variants were associated with altered white matter integrity (p = 2.5×10-7) in brain images from 1,738 young healthy adults, providing insight into the lifetime impact of SVD genetic risk. Mendelian randomization suggested causal association of increasing WMH-volume with stroke, Alzheimer-type dementia, and of increasing blood pressure (BP) with larger WMH-volume, notably also in persons without clinical hypertension. Transcriptome-wide colocalization analyses showed association of WMH-volume with expression of 39 genes, of which four encode known drug targets. Finally, we provide insight into BP-independent biological pathways underlying SVD and suggest potential for genetic stratification of high-risk individuals and for genetically-informed prioritization of drug targets for prevention trials.Peer reviewe

    Meta-analysis of 375,000 individuals identifies 38 susceptibility loci for migraine

    Get PDF
    Migraine is a debilitating neurological disorder affecting around one in seven people worldwide, but its molecular mechanisms remain poorly understood. There is some debate about whether migraine is a disease of vascular dysfunction or a result of neuronal dysfunction with secondary vascular changes. Genome-wide association (GWA) studies have thus far identified 13 independent loci associated with migraine. To identify new susceptibility loci, we carried out a genetic study of migraine on 59,674 affected subjects and 316,078 controls from 22 GWA studies. We identified 44 independent single-nucleotide polymorphisms (SNPs) significantly associated with migraine risk (P < 5 × 10−8) that mapped to 38 distinct genomic loci, including 28 loci not previously reported and a locus that to our knowledge is the first to be identified on chromosome X. In subsequent computational analyses, the identified loci showed enrichment for genes expressed in vascular and smooth muscle tissues, consistent with a predominant theory of migraine that highlights vascular etiologies

    Non-invasive measurements of ictal and interictal epileptiform activity using optically pumped magnetometers

    Get PDF
    Magneto- and electroencephalography (MEG/EEG) are important techniques for the diagnosis and pre-surgical evaluation of epilepsy. Yet, in current cryogen-based MEG systems the sensors are offset from the scalp, which limits the signal-to-noise ratio (SNR) and thereby the sensitivity to activity from deep structures such as the hippocampus. This effect is amplified in children, for whom adult-sized fixed-helmet systems are typically too big. Moreover, ictal recordings with fixed-helmet systems are problematic because of limited movement tolerance and/or logistical considerations. Optically Pumped Magnetometers (OPMs) can be placed directly on the scalp, thereby improving SNR and enabling recordings during seizures. We aimed to demonstrate the performance of OPMs in a clinical population. Seven patients with challenging cases of epilepsy underwent MEG recordings using a 12-channel OPM-system and a 306-channel cryogen-based whole-head system: three adults with known deep or weak (low SNR) sources of interictal epileptiform discharges (IEDs), along with three children with focal epilepsy and one adult with frequent seizures. The consistency of the recorded IEDs across the two systems was assessed. In one patient the OPMs detected IEDs that were not found with the SQUID-system, and in two patients no IEDs were found with either system. For the other patients the OPM data were remarkably consistent with the data from the cryogenic system, noting that these were recorded in different sessions, with comparable SNRs and IED-yields overall. Importantly, the wearability of OPMs enabled the recording of seizure activity in a patient with hyperkinetic movements during the seizure. The observed ictal onset and semiology were in agreement with previous video- and stereo-EEG recordings. The relatively affordable technology, in combination with reduced running and maintenance costs, means that OPM-based MEG could be used more widely than current MEG systems, and may become an affordable alternative to scalp EEG, with the potential benefits of increased spatial accuracy, reduced sensitivity to volume conduction/field spread, and increased sensitivity to deep sources. Wearable MEG thus provides an unprecedented opportunity for epilepsy, and given its patient-friendliness, we envisage that it will not only be used for presurgical evaluation of epilepsy patients, but also for diagnosis after a first seizure

    RVCL-S and CADASIL display distinct impaired vascular function

    No full text
    OBJECTIVE: We aimed to evaluate the role of endothelial-dependent and endothelial-independent vascular reactivity in retinal vasculopathy with cerebral leukoencephalopathy and systemic manifestations (RVCL-S) and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), both cerebral small vessel diseases are considered models for stroke, vascular dementia, and migraine. METHODS: RVCL-S (n = 18) and CADASIL (n = 23) participants with TREX1 and NOTCH3 mutations, respectively, were compared with controls matched for age, body mass index, and sex (n = 26). Endothelial function was evaluated by flow-mediated vasodilatation, and endothelial-independent vascular reactivity (i.e., vascular smooth muscle cell function) was assessed by dermal blood flow response to capsaicin application. RESULTS: Flow-mediated vasodilatation was decreased in participants with RVCL-S compared with controls (2.32% ± 3.83% vs 5.76% ± 3.07% change in diameter, p = 0.023) but normal in participants with CADASIL. Vascular smooth muscle cell function was reduced in participants with CADASIL compared with controls (maximal dermal blood flow increase at 40 minutes after capsaicin: 1.38 ± 0.88 vs 2.22 ± 1.20 arbitrary units, p = 0.010) but normal in participants with RVCL-S. CONCLUSIONS: We identified endothelial dysfunction in RVCL-S and confirmed impaired vascular smooth muscle cell relaxation in CADASIL. Our findings may prove to be biomarkers for disease progression in both monogenic cerebral small vessel diseases and improve mechanistic insight in their pathophysiology. This may help in understanding common neurovascular disorders, including stroke, dementia, and migraine.status: publishe

    RVCL-S and CADASIL display distinct impaired vascular function

    No full text
    OBJECTIVE: We aimed to evaluate the role of endothelial-dependent and endothelial-independent vascular reactivity in retinal vasculopathy with cerebral leukoencephalopathy and systemic manifestations (RVCL-S) and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), both cerebral small vessel diseases are considered models for stroke, vascular dementia, and migraine. METHODS: RVCL-S (n = 18) and CADASIL (n = 23) participants with TREX1 and NOTCH3 mutations, respectively, were compared with controls matched for age, body mass index, and sex (n = 26). Endothelial function was evaluated by flow-mediated vasodilatation, and endothelial-independent vascular reactivity (i.e., vascular smooth muscle cell function) was assessed by dermal blood flow response to capsaicin application. RESULTS: Flow-mediated vasodilatation was decreased in participants with RVCL-S compared with controls (2.32% ± 3.83% vs 5.76% ± 3.07% change in diameter, p = 0.023) but normal in participants with CADASIL. Vascular smooth muscle cell function was reduced in participants with CADASIL compared with controls (maximal dermal blood flow increase at 40 minutes after capsaicin: 1.38 ± 0.88 vs 2.22 ± 1.20 arbitrary units, p = 0.010) but normal in participants with RVCL-S. CONCLUSIONS: We identified endothelial dysfunction in RVCL-S and confirmed impaired vascular smooth muscle cell relaxation in CADASIL. Our findings may prove to be biomarkers for disease progression in both monogenic cerebral small vessel diseases and improve mechanistic insight in their pathophysiology. This may help in understanding common neurovascular disorders, including stroke, dementia, and migraine

    Episodic ataxia associated with EAAT1 mutation C186S affecting glutamate reuptake

    No full text
    Background: Episodic ataxia (EA) is variably associated with additional neurologic symptoms. At least 4 genes have been implicated. Recently, a mutation in the SLC1A3 gene encoding the glutamate transporter EAAT1 was identified in a patient with severe episodic and progressive ataxia, seizures, alternating hemiplegia, and migraine headache. The mutant EAAT1 showed severely reduced uptake of glutamate. The syndrome was designated EA6 and shares overlapping clinical features with EA2, which is caused by mutations in CACNA1A. Objective: To test the role of the SLC1A3 gene in EA. Design: Genetic and functional studies. We analyzed the coding region of the SLC1A3 gene by direct sequencing. Setting: Academic research. Patients: DNA samples from 20 patients with EA (with or without interictal nystagmus) negative for CACNA1A mutations were analyzed. Main Outcome Measures: We identified 1 novel EAAT1 mutation in a family with EA and studied the functional consequences of this mutation using glutamate uptake assay. Results: We identified a missense C186S mutation that segregated with EA in 3 family members. The mutant EAAT1 showed a modest but significant reduction of glutamate uptake. Conclusions: We broadened the clinical spectrum associated with SLC1A3 mutations to include milder manifestations of EA without seizures or alternating hemiplegia. The severity of EA6 symptoms appears to be correlated with the extent of glutamate transporter dysfunction
    corecore